basic_layers.py
62.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
# Copyright 2016 Johns Hopkins University (Dan Povey)
# 2016 Vijayaditya Peddinti
# 2017 Google Inc. (vpeddinti@google.com)
# 2017 Vimal Manohar
# Apache 2.0.
""" This module contains the parent class from which all layers are inherited
and some basic layer definitions.
"""
from __future__ import print_function
from __future__ import division
import math
import re
import sys
import libs.nnet3.xconfig.utils as xutils
import libs.common as common_lib
class XconfigLayerBase(object):
""" A base-class for classes representing layers of xconfig files.
"""
def __init__(self, first_token, key_to_value, all_layers):
"""
first_token: first token on the xconfig line, e.g. 'affine-layer'.f
key_to_value: dictionary with parameter values
{ 'name':'affine1',
'input':'Append(0, 1, 2, ReplaceIndex(ivector, t, 0))',
'dim=1024' }.
The only required and 'special' values that are dealt with directly
at this level, are 'name' and 'input'. The rest are put in
self.config and are dealt with by the child classes' init functions.
all_layers: An array of objects inheriting XconfigLayerBase for all
previously parsed layers.
"""
self.layer_type = first_token
if 'name' not in key_to_value:
raise RuntimeError("Expected 'name' to be specified.")
self.name = key_to_value['name']
if not xutils.is_valid_line_name(self.name):
raise RuntimeError("Invalid value: name={0}".format(
key_to_value['name']))
# It is possible to have two layers with a same name in 'all_layer', if
# the layer type for one of them is 'existing'.
# Layers of type 'existing' are corresponding to the component-node names
# in the existing model, which we are adding layers to them.
# 'existing' layers are not presented in any config file, and new layer
# with the same name can exist in 'all_layers'.
# e.g. It is possible to have 'output-node' with name 'output' in the
# existing model, which is added to all_layers using layer type 'existing',
# and 'output-node' of type 'output-layer' with the same name 'output' in
# 'all_layers'.
for prev_layer in all_layers:
if (self.name == prev_layer.name and
prev_layer.layer_type is not 'existing'):
raise RuntimeError("Name '{0}' is used for more than one "
"layer.".format(self.name))
self.config = {}
# the following, which should be overridden in the child class, sets
# default config parameters in self.config.
self.set_default_configs()
# The following is not to be reimplemented in child classes;
# it sets the config values to those specified by the user, and
# parses any Descriptors.
self.set_configs(key_to_value, all_layers)
# This method, sets the derived default config values
# i.e., config values when not specified can be derived from
# other values. It can be overridden in the child class.
self.set_derived_configs()
# the following, which should be overridden in the child class, checks
# that the config parameters that have been set are reasonable.
self.check_configs()
def set_configs(self, key_to_value, all_layers):
""" Sets the config variables.
We broke this code out of __init__ for clarity.
the child-class constructor will deal with the configuration values
in a more specific way.
"""
# First check that there are no keys that don't correspond to any config
# parameter of this layer, and if so, raise an exception with an
# informative message saying what configs are allowed.
for key, value in key_to_value.items():
if key != 'name':
if key not in self.config:
configs = ' '.join([('{0}->"{1}"'.format(x, y) if isinstance(y, str)
else '{0}->{1}'.format(x, y))
for x, y in self.config.items()])
raise RuntimeError("Configuration value {0}={1} was not "
"expected in layer of type {2}; allowed "
"configs with their defaults: {3}"
"" .format(key, value, self.layer_type, configs))
for key, value in key_to_value.items():
if key != 'name':
assert key in self.config # we checked above.
self.config[key] = xutils.convert_value_to_type(key,
type(self.config[key]),
value)
self.descriptors = dict()
self.descriptor_dims = dict()
# Parse Descriptors and get their dims and their 'final' string form.
# in self.descriptors[key]
for key in self.get_input_descriptor_names():
if key not in self.config:
raise RuntimeError("{0}: object of type {1} needs to override"
" get_input_descriptor_names()."
"".format(sys.argv[0], str(type(self))))
descriptor_string = self.config[key] # input string.
assert isinstance(descriptor_string, str)
desc = self.convert_to_descriptor(descriptor_string, all_layers)
desc_dim = self.get_dim_for_descriptor(desc, all_layers)
desc_norm_str = desc.str()
# desc_output_str contains the "final" component names, those that
# appear in the actual config file (i.e. not names like
# 'layer.auxiliary_output'); that's how it differs from desc_norm_str.
# Note: it's possible that the two strings might be the same in
# many, even most, cases-- it depends whether
# output_name(self, auxiliary_output)
# returns self.get_name() + '.' + auxiliary_output
# when auxiliary_output is not None.
# That's up to the designer of the layer type.
desc_output_str = self.get_string_for_descriptor(desc, all_layers)
self.descriptors[key] = {'string': desc,
'normalized-string': desc_norm_str,
'final-string': desc_output_str,
'dim': desc_dim}
# the following helps to check the code by parsing it again.
desc2 = self.convert_to_descriptor(desc_norm_str, all_layers)
desc_norm_str2 = desc2.str()
# if the following ever fails we'll have to do some debugging.
if desc_norm_str != desc_norm_str2:
raise RuntimeError("Likely code error: '{0}' != '{1}'"
"".format(desc_norm_str, desc_norm_str2))
def str(self):
"""Converts 'this' to a string which could be printed to
an xconfig file; in xconfig_to_configs.py we actually expand all the
lines to strings and write it as xconfig.expanded as a reference
(so users can see any defaults).
"""
list_of_entries = ['{0} name={1}'.format(self.layer_type, self.name)]
for key, value in sorted(self.config.items()):
if isinstance(value, str) and re.search('=', value):
# the value is a string that contains an '=' sign, so we need to
# enclose it in double-quotes, otherwise we woudldn't be able to
# parse from that output.
if re.search('"', value):
print("Warning: config '{0}={1}' contains both double-quotes "
"and equals sign; it will not be possible to parse it "
"from the file.".format(key, value), file=sys.stderr)
list_of_entries.append('{0}="{1}"'.format(key, value))
else:
list_of_entries.append('{0}={1}'.format(key, value))
return ' '.join(list_of_entries)
def __str__(self):
return self.str()
def normalize_descriptors(self):
"""Converts any config variables in self.config which correspond to
Descriptors, into a 'normalized form' derived from parsing them as
Descriptors, replacing things like [-1] with the actual layer names,
and regenerating them as strings. We stored this when the object was
initialized, in self.descriptors; this function just copies them back
to the config.
"""
for key, desc_str_dict in self.descriptors.items():
self.config[key] = desc_str_dict['normalized-string']
def convert_to_descriptor(self, descriptor_string, all_layers):
"""Convenience function intended to be called from child classes,
converts a string representing a descriptor ('descriptor_string')
into an object of type Descriptor, and returns it. It needs 'self' and
'all_layers' (where 'all_layers' is a list of objects of type
XconfigLayerBase) so that it can work out a list of the names of other
layers, and get dimensions from them.
"""
prev_names = xutils.get_prev_names(all_layers, self)
tokens = xutils.tokenize_descriptor(descriptor_string, prev_names)
pos = 0
(descriptor, pos) = xutils.parse_new_descriptor(tokens, pos, prev_names)
# note: 'pos' should point to the 'end of string' marker
# that terminates 'tokens'.
if pos != len(tokens) - 1:
raise RuntimeError("Parsing Descriptor, saw junk at end: {0}"
"".format(' '.join(tokens[pos:-1])))
return descriptor
def get_dim_for_descriptor(self, descriptor, all_layers):
"""Returns the dimension of a Descriptor object. This is a convenience
function used in set_configs.
"""
layer_to_dim_func = \
lambda name: xutils.get_dim_from_layer_name(all_layers, self,
name)
return descriptor.dim(layer_to_dim_func)
def get_string_for_descriptor(self, descriptor, all_layers):
"""Returns the 'final' string form of a Descriptor object,
as could be used in config files. This is a convenience function
provided for use in child classes;
"""
layer_to_string_func = \
lambda name: xutils.get_string_from_layer_name(all_layers,
self, name)
return descriptor.config_string(layer_to_string_func)
def get_name(self):
"""Returns the name of this layer, e.g. 'affine1'. It does not
necessarily correspond to a component name.
"""
return self.name
###### Functions that might be overridden by the child class: #####
def set_default_configs(self):
"""Child classes should override this.
"""
raise Exception("Child classes must override set_default_configs().")
def set_derived_configs(self):
"""This is expected to be called after set_configs and before
check_configs().
"""
if 'dim' in self.config and self.config['dim'] <= 0:
self.config['dim'] = self.descriptors['input']['dim']
def check_configs(self):
"""child classes should override this.
"""
pass
def get_input_descriptor_names(self):
"""This function, which may be (but usually will not have to be)
overridden by child classes, returns a list of names of the input
descriptors expected by this component. Typically this would just
return ['input'] as most layers just have one 'input'. However some
layers might require more inputs (e.g. cell state of previous LSTM layer
in Highway LSTMs). It is used in the function 'normalize_descriptors()'.
This implementation will work for layer types whose only
Descriptor-valued config is 'input'.
If a child class adds more inputs, or does not have an input
(e.g. the XconfigInputLayer), it should override this function's
implementation to something like: `return ['input', 'input2']`
"""
return ['input']
def auxiliary_outputs(self):
"""Returns a list of all auxiliary outputs that this layer supports.
These are either 'None' for the regular output, or a string
(e.g. 'projection' or 'memory_cell') for any auxiliary outputs that
the layer might provide. Most layer types will not need to override
this.
"""
return [None]
def output_name(self, auxiliary_output=None):
"""Called with auxiliary_output is None, this returns the component-node
name of the principal output of the layer (or if you prefer, the text
form of a descriptor that gives you such an output; such as
Append(some_node, some_other_node)).
The 'auxiliary_output' argument is a text value that is designed for
extensions to layers that have additional auxiliary outputs.
For example, to implement a highway LSTM you need the memory-cell of a
layer, so you might allow auxiliary_output='memory_cell' for such a
layer type, and it would return the component node or a suitable
Descriptor: something like 'lstm3.c_t'
"""
raise Exception("Child classes must override output_name()")
def output_dim(self, auxiliary_output=None):
"""The dimension that this layer outputs. The 'auxiliary_output'
parameter is for layer types which support auxiliary outputs.
"""
raise Exception("Child classes must override output_dim()")
def get_full_config(self):
"""This function returns lines destined for the 'full' config format, as
would be read by the C++ programs. Since the program
xconfig_to_configs.py writes several config files, this function returns
a list of pairs of the form (config_file_basename, line),
e.g. something like
[ ('init', 'input-node name=input dim=40'),
('ref', 'input-node name=input dim=40') ]
which would be written to config_dir/init.config and config_dir/ref.config.
"""
raise Exception("Child classes must override get_full_config()")
class XconfigInputLayer(XconfigLayerBase):
"""This class is for lines like
'input name=input dim=40'
or
'input name=ivector dim=100'
in the config file.
"""
def __init__(self, first_token, key_to_value, prev_names=None):
assert first_token == 'input'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
self.config = {'dim': -1}
def check_configs(self):
if self.config['dim'] <= 0:
raise RuntimeError("Dimension of input-layer '{0}'"
"should be positive.".format(self.name))
def get_input_descriptor_names(self):
return [] # there is no 'input' field in self.config.
def output_name(self, auxiliary_outputs=None):
# there are no auxiliary outputs as this layer will just pass the input
assert auxiliary_outputs is None
return self.name
def output_dim(self, auxiliary_outputs=None):
# there are no auxiliary outputs as this layer will just pass the input
assert auxiliary_outputs is None
return self.config['dim']
def get_full_config(self):
# unlike other layers the input layers need to be printed in
# 'init.config' (which initializes the neural network prior to the LDA)
ans = []
for config_name in ['init', 'ref', 'final']:
ans.append((config_name,
'input-node name={0} dim={1}'.format(self.name,
self.config['dim'])))
return ans
class XconfigTrivialOutputLayer(XconfigLayerBase):
"""
This class is for lines like
'output name=output input=Append(input@-1, input@0, input@1, ReplaceIndex(ivector, t, 0))'
This is for outputs that are not really output "layers"
(there is no affine transform or nonlinearity), they just directly map to an
output-node in nnet3.
Parameters of the class, and their defaults:
input='[-1]' : Descriptor giving the input of the layer.
objective-type=linear : the only other choice currently is
'quadratic', for use in regression problems
output-delay=0 : Can be used to shift the frames on the output, equivalent
to delaying labels by this many frames (positive value increases latency
in online decoding but may help if you're using unidirectional LSTMs.
"""
def __init__(self, first_token, key_to_value, prev_names=None):
assert first_token == 'output'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
# note: self.config['input'] is a descriptor, '[-1]' means output
# the most recent layer.
self.config = {'input': '[-1]', 'dim': -1,
'objective-type': 'linear',
'output-delay': 0}
def check_configs(self):
if self.config['objective-type'] != 'linear' and \
self.config['objective-type'] != 'quadratic':
raise RuntimeError("In output, objective-type has"
" invalid value {0}"
"".format(self.config['objective-type']))
def output_name(self, auxiliary_outputs=None):
# there are no auxiliary outputs as this layer will just pass the output
# of the previous layer
assert auxiliary_outputs is None
return self.name
def output_dim(self, auxiliary_outputs=None):
assert auxiliary_outputs is None
# note: each value of self.descriptors is (descriptor, dim, normalized-string, output-string).
return self.descriptors['input']['dim']
def get_full_config(self):
# the input layers need to be printed in 'init.config' (which
# initializes the neural network prior to the LDA), in 'ref.config',
# which is a version of the config file used for getting left and right
# context (it doesn't read anything for the LDA-like transform).
# In 'full.config' we write everything, this is just for reference,
# and also for cases where we don't use the LDA-like transform.
ans = []
# note: each value of self.descriptors is (descriptor, dim,
# normalized-string, output-string).
# by 'output-string' we mean a string that can appear in
# config-files, i.e. it contains the 'final' names of nodes.
descriptor_final_str = self.descriptors['input']['final-string']
objective_type = self.config['objective-type']
output_delay = self.config['output-delay']
if output_delay != 0:
descriptor_final_str = (
'Offset({0}, {1})'.format(descriptor_final_str, output_delay))
for config_name in ['ref', 'final']:
ans.append((config_name,
'output-node name={0} input={1} '
'objective={2}'.format(
self.name, descriptor_final_str,
objective_type)))
return ans
class XconfigOutputLayer(XconfigLayerBase):
"""This class is for lines like
'output-layer name=output dim=4257 input=Append(input@-1, input@0, input@1, ReplaceIndex(ivector, t, 0))'
By default this includes a log-softmax component. The parameters are
initialized to zero, as this empirically tends to be the best approach for output layers.
Parameters of the class, and their defaults:
input='[-1]' : Descriptor giving the input of the layer.
dim=None : Output dimension of layer, will normally equal the number of pdfs.
bottleneck-dim=None : Bottleneck dimension of layer: if supplied, instead of
an affine component we'll have a linear then affine, so a linear
bottleneck, with the linear part constrained to be orthonormal.
include-log-softmax=true : setting it to false will omit the
log-softmax component- useful for chain models.
objective-type=linear : the only other choice currently is
'quadratic', for use in regression problems
learning-rate-factor=1.0 : Learning rate factor for the final
affine component, multiplies the standard learning rate. normally
you'll leave this as-is, but for xent regularization output layers
for chain models you'll want to set
learning-rate-factor=(0.5/xent_regularize),
normally learning-rate-factor=5.0 since xent_regularize is
normally 0.1.
max-change=1.5 : Can be used to change the max-change parameter in the
affine component; this affects how much the matrix can change on each
iteration.
l2-regularize=0.0: Set this to a nonzero value (e.g. 1.0e-05) to
add l2 regularization on the parameter norm for the affine component.
output-delay=0 : Can be used to shift the frames on the output, equivalent
to delaying labels by this many frames (positive value increases latency
in online decoding but may help if you're using unidirectional LSTMs.
ng-affine-options='' : Can be used supply non-default options to the affine
layer (intended for the natural gradient but can be an arbitrary string
to be added to the config line. e.g. 'update-period=2'.).
ng-linear-options='' : Options, like ng-affine-options, that are passed to
the LinearComponent, only in bottleneck layers (i.e. if bottleneck-dim
is supplied).
"""
def __init__(self, first_token, key_to_value, prev_names=None):
assert first_token == 'output-layer'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
# note: self.config['input'] is a descriptor, '[-1]' means output
# the most recent layer.
self.config = {'input': '[-1]',
'dim': -1,
'bottleneck-dim': -1,
'orthonormal-constraint': 1.0,
# orthonormal-constraint only matters if bottleneck-dim is set.
'include-log-softmax': True,
# this would be false for chain models
'objective-type': 'linear',
# see Nnet::ProcessOutputNodeConfigLine in
# nnet-nnet.cc for other options
'output-delay': 0,
'ng-affine-options': '',
'ng-linear-options': '', # only affects bottleneck output layers.
# The following are just passed through to the affine
# component, and (in the bottleneck case) the linear
# component.
'learning-rate-factor': '', # effective default: 1.0
'l2-regularize': '', # effective default: 0.0
'max-change': 1.5,
# The following are passed through to the affine component only.
# It tends to be beneficial to initialize the output layer with
# zero values, unlike the hidden layers.
'param-stddev': 0.0,
'bias-stddev': 0.0,
}
def check_configs(self):
if self.config['dim'] <= -1:
raise RuntimeError("In output-layer, dim has invalid value {0}"
"".format(self.config['dim']))
if self.config['objective-type'] != 'linear' and \
self.config['objective-type'] != 'quadratic':
raise RuntimeError("In output-layer, objective-type has"
" invalid value {0}"
"".format(self.config['objective-type']))
if self.config['orthonormal-constraint'] <= 0.0:
raise RuntimeError("output-layer does not support negative (floating) "
"orthonormal constraint; use a separate linear-component "
"followed by batchnorm-component.")
def auxiliary_outputs(self):
auxiliary_outputs = ['affine']
if self.config['include-log-softmax']:
auxiliary_outputs.append('log-softmax')
return auxiliary_outputs
def output_name(self, auxiliary_output=None):
if auxiliary_output is None:
# Note: nodes of type output-node in nnet3 may not be accessed in
# Descriptors, so calling this with auxiliary_outputs=None doesn't
# make sense.
raise RuntimeError("Outputs of output-layer may not be used by other"
" layers")
if auxiliary_output in self.auxiliary_outputs():
return '{0}.{1}'.format(self.name, auxiliary_output)
else:
raise RuntimeError("Unknown auxiliary output name {0}"
"".format(auxiliary_output))
def output_dim(self, auxiliary_output=None):
if auxiliary_output is None:
# Note: nodes of type output-node in nnet3 may not be accessed in
# Descriptors, so calling this with auxiliary_outputs=None doesn't
# make sense.
raise RuntimeError("Outputs of output-layer may not be used by other"
" layers")
return self.config['dim']
def get_full_config(self):
ans = []
config_lines = self._generate_config()
for line in config_lines:
for config_name in ['ref', 'final']:
# we do not support user specified matrices in LSTM initialization
# so 'ref' and 'final' configs are the same.
ans.append((config_name, line))
return ans
def _generate_config(self):
configs = []
# note: each value of self.descriptors is (descriptor, dim,
# normalized-string, output-string).
# by 'descriptor_final_string' we mean a string that can appear in
# config-files, i.e. it contains the 'final' names of nodes.
descriptor_final_string = self.descriptors['input']['final-string']
input_dim = self.descriptors['input']['dim']
output_dim = self.config['dim']
bottleneck_dim = self.config['bottleneck-dim']
objective_type = self.config['objective-type']
include_log_softmax = self.config['include-log-softmax']
output_delay = self.config['output-delay']
affine_options = self.config['ng-affine-options']
for opt in [ 'learning-rate-factor', 'l2-regularize', 'max-change',
'param-stddev', 'bias-stddev' ]:
if self.config[opt] != '':
affine_options += ' {0}={1}'.format(opt, self.config[opt])
cur_node = descriptor_final_string
cur_dim = input_dim
if bottleneck_dim >= 0:
if bottleneck_dim == 0 or bottleneck_dim >= input_dim or bottleneck_dim >= output_dim:
raise RuntimeError("Bottleneck dim has value that does not make sense: {0}".format(
bottleneck_dim))
# This is the bottleneck case (it doesn't necessarily imply we
# will be using the features from the bottleneck; it's just a factorization
# of the matrix into two pieces without a nonlinearity in between).
# We don't include the l2-regularize option because it's useless
# given the orthonormality constraint.
linear_options = self.config['ng-linear-options']
for opt in [ 'learning-rate-factor', 'l2-regularize', 'max-change' ]:
if self.config[opt] != '':
linear_options += ' {0}={1}'.format(opt, self.config[opt])
# note: by default the LinearComponent uses natural gradient.
line = ('component name={0}.linear type=LinearComponent '
'orthonormal-constraint={1} param-stddev={2} '
'input-dim={3} output-dim={4} max-change=0.75 {5}'
''.format(self.name, self.config['orthonormal-constraint'],
self.config['orthonormal-constraint'] / math.sqrt(input_dim),
input_dim, bottleneck_dim, linear_options))
configs.append(line)
line = ('component-node name={0}.linear component={0}.linear input={1}'
''.format(self.name, cur_node))
configs.append(line)
cur_node = '{0}.linear'.format(self.name)
cur_dim = bottleneck_dim
line = ('component name={0}.affine'
' type=NaturalGradientAffineComponent'
' input-dim={1} output-dim={2} {3}'
''.format(self.name, cur_dim, output_dim, affine_options))
configs.append(line)
line = ('component-node name={0}.affine'
' component={0}.affine input={1}'
''.format(self.name, cur_node))
configs.append(line)
cur_node = '{0}.affine'.format(self.name)
if include_log_softmax:
line = ('component name={0}.log-softmax'
' type=LogSoftmaxComponent dim={1}'
''.format(self.name, output_dim))
configs.append(line)
line = ('component-node name={0}.log-softmax'
' component={0}.log-softmax input={1}'
''.format(self.name, cur_node))
configs.append(line)
cur_node = '{0}.log-softmax'.format(self.name)
if output_delay != 0:
cur_node = 'Offset({0}, {1})'.format(cur_node, output_delay)
line = ('output-node name={0} input={1} '
'objective={2}'.format(
self.name, cur_node, objective_type))
configs.append(line)
return configs
class XconfigBasicLayer(XconfigLayerBase):
"""This class is for parsing lines like
'relu-renorm-layer name=layer1 dim=1024 input=Append(-3,0,3)'
or:
'sigmoid-layer name=layer1 dim=1024 input=Append(-3,0,3)'
which specify addition of an affine component and a sequence of non-linearities.
Here, the name of the layer itself dictates the sequence of nonlinearities
that are applied after the affine component; the name should contain some
combination of 'relu', 'renorm', 'sigmoid' and 'tanh',
and these nonlinearities will be added along with the affine component.
The dimension specified is the output dim; the input dim is worked out from the input descriptor.
This class supports only nonlinearity types that do not change the dimension; we can create
another layer type to enable the use p-norm and similar dimension-reducing nonlinearities.
See other configuration values below.
Parameters of the class, and their defaults:
input='[-1]' [Descriptor giving the input of the layer.]
dim=-1 [Output dimension of layer, e.g. 1024]
bottleneck-dim=-1 [If you set this, a linear bottleneck is added, so
we project to first bottleneck-dim then to dim. The
first of the two matrices is constrained to be
orthonormal.]
self-repair-scale=1.0e-05 [Affects relu, sigmoid and tanh layers.]
learning-rate-factor=1.0 [This can be used to make the affine component
train faster or slower].
add-log-stddev=False [If true, the log of the stddev of the output of
renorm layer is appended as an
additional dimension of the layer's output]
l2-regularize=0.0 [Set this to a nonzero value (e.g. 1.0e-05) to
add l2 regularization on the parameter norm for
this component.
"""
def __init__(self, first_token, key_to_value, prev_names=None):
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
# note: self.config['input'] is a descriptor, '[-1]' means output
# the most recent layer.
self.config = {'input': '[-1]',
'dim': -1,
'bottleneck-dim': -1, # Deprecated! Use tdnnf-layer for
# factorized TDNNs, or prefinal-layer
# for bottlenecks just before the output.
'self-repair-scale': 1.0e-05,
'target-rms': 1.0,
'ng-affine-options': '',
'ng-linear-options': '', # only affects bottleneck layers.
'dropout-proportion': 0.5, # dropout-proportion only
# affects layers with
# 'dropout' in the name
'dropout-per-dim': False, # if dropout-per-dim=true, the dropout
# mask is shared across time.
'dropout-per-dim-continuous': False, # if you set this, it's
# like dropout-per-dim but with a
# continuous-valued (not zero-one) mask.
'add-log-stddev': False,
# the following are not really inspected by this level of
# code, just passed through to the affine component if
# their value is not ''.
'bias-stddev': '',
'l2-regularize': '',
'learning-rate-factor': '',
'max-change': 0.75 }
def check_configs(self):
if self.config['dim'] < 0:
raise RuntimeError("dim has invalid value {0}".format(self.config['dim']))
b = self.config['bottleneck-dim']
if b >= 0 and (b >= self.config['dim'] or b == 0):
raise RuntimeError("bottleneck-dim has an invalid value {0}".format(b))
if self.config['self-repair-scale'] < 0.0 or self.config['self-repair-scale'] > 1.0:
raise RuntimeError("self-repair-scale has invalid value {0}"
.format(self.config['self-repair-scale']))
if self.config['target-rms'] < 0.0:
raise RuntimeError("target-rms has invalid value {0}"
.format(self.config['target-rms']))
if (self.config['learning-rate-factor'] != '' and
self.config['learning-rate-factor'] <= 0.0):
raise RuntimeError("learning-rate-factor has invalid value {0}"
.format(self.config['learning-rate-factor']))
def output_name(self, auxiliary_output=None):
# at a later stage we might want to expose even the pre-nonlinearity
# vectors
assert auxiliary_output is None
split_layer_name = self.layer_type.split('-')
assert split_layer_name[-1] == 'layer'
last_nonlinearity = split_layer_name[-2]
# return something like: layer3.renorm
return '{0}.{1}'.format(self.name, last_nonlinearity)
def output_dim(self, auxiliary_output=None):
output_dim = self.config['dim']
# If not set, the output-dim defaults to the input-dim.
if output_dim <= 0:
self.config['dim'] = self.descriptors['input']['dim']
return output_dim
def get_full_config(self):
ans = []
config_lines = self._generate_config()
for line in config_lines:
for config_name in ['ref', 'final']:
# we do not support user specified matrices in this layer
# so 'ref' and 'final' configs are the same.
ans.append((config_name, line))
return ans
def _generate_config(self):
split_layer_name = self.layer_type.split('-')
assert split_layer_name[-1] == 'layer'
nonlinearities = split_layer_name[:-1]
# by 'descriptor_final_string' we mean a string that can appear in
# config-files, i.e. it contains the 'final' names of nodes.
input_desc = self.descriptors['input']['final-string']
input_dim = self.descriptors['input']['dim']
# the child classes e.g. tdnn might want to process the input
# before adding the other components
return self._add_components(input_desc, input_dim, nonlinearities)
def _add_components(self, input_desc, input_dim, nonlinearities):
output_dim = self.output_dim()
self_repair_scale = self.config['self-repair-scale']
target_rms = self.config['target-rms']
affine_options = self.config['ng-affine-options']
for opt_name in [ 'max-change', 'learning-rate-factor',
'bias-stddev', 'l2-regularize' ]:
value = self.config[opt_name]
if value != '':
affine_options += ' {0}={1}'.format(opt_name, value)
# The output of the affine component needs to have one dimension fewer in order to
# get the required output dim, if the final 'renorm' component has 'add-log-stddev' set
# (since in that case it increases the dimension by one).
if self.config['add-log-stddev']:
output_dim -= 1
if not self.layer_type.split('-')[-2] == "renorm":
raise RuntimeError("add-log-stddev cannot be true unless "
"there is a final 'renorm' component.")
configs = []
cur_dim = input_dim
cur_node = input_desc
# First the affine node (or linear then affine, if bottleneck).
if self.config['bottleneck-dim'] > 0:
# The 'bottleneck-dim' option is deprecated and may eventually be
# removed. Best to use tdnnf-layer if you want factorized TDNNs.
# This is the bottleneck case (it doesn't necessarily imply we
# will be using the features from the bottleneck; it's just a factorization
# of the matrix into two pieces without a nonlinearity in between).
# We don't include the l2-regularize option because it's useless
# given the orthonormality constraint.
linear_options = self.config['ng-linear-options']
for opt_name in [ 'max-change', 'learning-rate-factor' ]:
value = self.config[opt_name]
if value != '':
linear_options += ' {0}={1}'.format(opt_name, value)
bottleneck_dim = self.config['bottleneck-dim']
# note: by default the LinearComponent uses natural gradient.
line = ('component name={0}.linear type=LinearComponent '
'input-dim={1} orthonormal-constraint=1.0 output-dim={2} {3}'
''.format(self.name, input_dim, bottleneck_dim, linear_options))
configs.append(line)
line = ('component-node name={0}.linear component={0}.linear input={1}'
''.format(self.name, cur_node))
configs.append(line)
cur_node = '{0}.linear'.format(self.name)
cur_dim = bottleneck_dim
line = ('component name={0}.affine type=NaturalGradientAffineComponent'
' input-dim={1} output-dim={2} {3}'
''.format(self.name, cur_dim, output_dim, affine_options))
configs.append(line)
line = ('component-node name={0}.affine component={0}.affine input={1}'
''.format(self.name, cur_node))
configs.append(line)
cur_node = '{0}.affine'.format(self.name)
for i, nonlinearity in enumerate(nonlinearities):
if nonlinearity == 'relu':
line = ('component name={0}.{1} type=RectifiedLinearComponent dim={2}'
' self-repair-scale={3}'
''.format(self.name, nonlinearity, output_dim,
self_repair_scale))
elif nonlinearity == 'sigmoid':
line = ('component name={0}.{1}'
' type=SigmoidComponent dim={2}'
' self-repair-scale={3}'
''.format(self.name, nonlinearity, output_dim,
self_repair_scale))
elif nonlinearity == 'tanh':
line = ('component name={0}.{1}'
' type=TanhComponent dim={2}'
' self-repair-scale={3}'
''.format(self.name, nonlinearity, output_dim,
self_repair_scale))
elif nonlinearity == 'renorm':
add_log_stddev = "false"
if i == len(nonlinearities) - 1:
add_log_stddev = ("true" if self.config['add-log-stddev']
else "false")
line = ('component name={0}.{1}'
' type=NormalizeComponent dim={2}'
' target-rms={3}'
' add-log-stddev={4}'
''.format(self.name, nonlinearity, output_dim,
target_rms, add_log_stddev))
elif nonlinearity == 'batchnorm':
line = ('component name={0}.{1}'
' type=BatchNormComponent dim={2} target-rms={3}'
''.format(self.name, nonlinearity, output_dim,
target_rms))
elif nonlinearity == 'so':
line = ('component name={0}.{1}'
' type=ScaleAndOffsetComponent dim={2} max-change=0.5 '
''.format(self.name, nonlinearity, output_dim))
elif nonlinearity == 'dropout':
if not (self.config['dropout-per-dim'] or
self.config['dropout-per-dim-continuous']):
line = ('component name={0}.{1} type=DropoutComponent '
'dim={2} dropout-proportion={3}'.format(
self.name, nonlinearity, output_dim,
self.config['dropout-proportion']))
else:
continuous_opt='continuous=true' if self.config['dropout-per-dim-continuous'] else ''
line = ('component name={0}.dropout type=GeneralDropoutComponent '
'dim={1} dropout-proportion={2} {3}'.format(
self.name, output_dim, self.config['dropout-proportion'],
continuous_opt))
else:
raise RuntimeError("Unknown nonlinearity type: {0}"
.format(nonlinearity))
configs.append(line)
line = ('component-node name={0}.{1}'
' component={0}.{1} input={2}'
''.format(self.name, nonlinearity, cur_node))
configs.append(line)
cur_node = '{0}.{1}'.format(self.name, nonlinearity)
return configs
class XconfigFixedAffineLayer(XconfigLayerBase):
"""
This class is for lines like
'fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=foo/bar/lda.mat'
The output dimension of the layer may be specified via 'dim=xxx', but if not specified,
the dimension defaults to the same as the input. Note: we don't attempt to read that
file at the time the config is created, because in the recipes, that file is created
after the config files.
See other configuration values below.
Parameters of the class, and their defaults:
input='[-1]' [Descriptor giving the input of the layer.]
dim=None [Output dimension of layer; defaults to the same as the input dim.]
affine-transform-file='' [Must be specified.]
delay=0 [Optional delay for the output-node in init.config]
"""
def __init__(self, first_token, key_to_value, prev_names=None):
assert first_token == 'fixed-affine-layer'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
# note: self.config['input'] is a descriptor, '[-1]' means output
# the most recent layer.
self.config = {'input': '[-1]',
'dim': -1,
'affine-transform-file': '',
'delay': 0,
'write-init-config': True}
def check_configs(self):
if self.config['affine-transform-file'] is None:
raise RuntimeError("affine-transform-file must be set.")
def output_name(self, auxiliary_output=None):
# Fixed affine layer computes only one vector, there are no intermediate
# vectors.
assert auxiliary_output is None
return self.name
def output_dim(self, auxiliary_output=None):
output_dim = self.config['dim']
# If not set, the output-dim defaults to the input-dim.
if output_dim <= 0:
output_dim = self.descriptors['input']['dim']
return output_dim
def get_full_config(self):
ans = []
# note: each value of self.descriptors is (descriptor, dim,
# normalized-string, output-string).
# by 'descriptor_final_string' we mean a string that can appear in
# config-files, i.e. it contains the 'final' names of nodes.
descriptor_final_string = self.descriptors['input']['final-string']
input_dim = self.descriptors['input']['dim']
output_dim = self.output_dim()
transform_file = self.config['affine-transform-file']
if self.config['write-init-config']:
if self.config['delay'] != 0:
line = 'component name={0}.delayed type=NoOpComponent dim={1}'.format(self.name, input_dim)
ans.append(('init', line))
line = 'component-node name={0}.delayed component={0}.delayed input={1}'.format(self.name, descriptor_final_string)
ans.append(('init', line))
line = 'output-node name=output input=Offset({0}.delayed, {1})'.format(self.name, self.config['delay'])
ans.append(('init', line))
else:
# to init.config we write an output-node with the name 'output' and
# with a Descriptor equal to the descriptor that's the input to this
# layer. This will be used to accumulate stats to learn the LDA transform.
line = 'output-node name=output input={0}'.format(descriptor_final_string)
ans.append(('init', line))
# write the 'real' component to final.config
line = 'component name={0} type=FixedAffineComponent matrix={1}'.format(
self.name, transform_file)
ans.append(('final', line))
# write a random version of the component, with the same dims, to ref.config
line = 'component name={0} type=FixedAffineComponent input-dim={1} output-dim={2}'.format(
self.name, input_dim, output_dim)
ans.append(('ref', line))
# the component-node gets written to final.config and ref.config.
line = 'component-node name={0} component={0} input={1}'.format(
self.name, descriptor_final_string)
ans.append(('final', line))
ans.append(('ref', line))
return ans
class XconfigAffineLayer(XconfigLayerBase):
"""
This class is for lines like
'affine-layer name=affine input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0))'
The output dimension of the layer may be specified via 'dim=xxx', but if not specified,
the dimension defaults to the same as the input. Note: we don't attempt to read that
file at the time the config is created, because in the recipes, that file is created
after the config files.
See other configuration values below.
Parameters of the class, and their defaults:
input='[-1]' [Descriptor giving the input of the layer.]
dim=None [Output dimension of layer; defaults to the same as the input dim.]
l2-regularize=0.0 [Set this to a nonzero value (e.g. 1.0e-05) to
add l2 regularization on the parameter norm
for the affine component.]
"""
def __init__(self, first_token, key_to_value, prev_names=None):
assert first_token == 'affine-layer'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
# note: self.config['input'] is a descriptor, '[-1]' means output
# the most recent layer.
# use None for optional parameters as we want to default to the C++ defaults
# C++ component provides more options but I will just expose these for now
# Note : The type of the parameter is determined based on the value assigned
# so please use decimal point if your parameter is a float
self.config = {'input': '[-1]',
'dim': -1,
'param-stddev': -1.0, # this has to be initialized to 1/sqrt(input_dim)
'bias-stddev': 1.0,
'bias-mean': 0.0,
'max-change': 0.75,
'l2-regularize': 0.0,
'learning-rate-factor': 1.0,
'ng-affine-options': ''}
def set_derived_configs(self):
super(XconfigAffineLayer, self).set_derived_configs()
if self.config['param-stddev'] < 0:
self.config['param-stddev'] = 1.0 / math.sqrt(self.descriptors['input']['dim'])
def check_configs(self):
if self.config['dim'] <= 0:
raise RuntimeError("dim specified is invalid")
def output_name(self, auxiliary_output=None):
# affine layer computes only one vector, there are no intermediate
# vectors.
assert auxiliary_output is None
return self.name
def output_dim(self, auxiliary_output=None):
output_dim = self.config['dim']
# If not set, the output-dim defaults to the input-dim.
if output_dim <= 0:
output_dim = self.descriptors['input']['dim']
return output_dim
def get_full_config(self):
ans = []
# note: each value of self.descriptors is (descriptor, dim,
# normalized-string, output-string).
# by 'descriptor_final_string' we mean a string that can appear in
# config-files, i.e. it contains the 'final' names of nodes.
descriptor_final_string = self.descriptors['input']['final-string']
input_dim = self.descriptors['input']['dim']
output_dim = self.output_dim()
option_string = ''
for key in ['param-stddev', 'bias-stddev', 'bias-mean', 'max-change',
'l2-regularize']:
option_string += ' {0}={1}'.format(key, self.config[key])
option_string += self.config['ng-affine-options']
conf_lines = []
# write the 'real' component to final.config
conf_lines.append('component name={n} type=NaturalGradientAffineComponent '
'input-dim={i} output-dim={o} {opts}'.format(n=self.name,
i=input_dim,
o=output_dim,
opts=option_string))
# the component-node gets written to final.config and ref.config.
conf_lines.append('component-node name={0} component={0} input={1}'.format(self.name,
descriptor_final_string))
# the config is same for both final and ref configs
for conf_name in ['final', 'ref']:
for line in conf_lines:
ans.append((conf_name, line))
return ans
class XconfigIdctLayer(XconfigLayerBase):
"""
This class is for lines like
'idct-layer name=idct dim=40 cepstral-lifter=22 affine-transform-file=foo/bar/idct.mat'
This is used to convert input MFCC-features to Filterbank featurs. The
affine transformation is written out to the file specified via
'affine-transform-file=xxx'.
The output dimension of the layer may be specified via 'dim=xxx', but if not specified,
the dimension defaults to the same as the input.
See other configuration values below.
Parameters of the class, and their defaults:
input='[-1]' [Descriptor giving the input of the layer.]
dim=None [Output dimension of layer; defaults to the same as the input dim.]
cepstral-lifter=22 [Apply liftering co-efficient.]
affine-transform-file='' [Must be specified.]
include-in-init=false [You should set this to true if this precedes a
`fixed-affine-layer` that is to be initialized
via LDA]
"""
def __init__(self, first_token, key_to_value, prev_names=None):
assert first_token == 'idct-layer'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
# note: self.config['input'] is a descriptor, '[-1]' means output
# the most recent layer.
self.config = {'input': '[-1]',
'dim': -1,
'cepstral-lifter': 22.0,
'affine-transform-file': '',
'include-in-init': False}
def check_configs(self):
if self.config['affine-transform-file'] is None:
raise RuntimeError("affine-transform-file must be set.")
def output_name(self, auxiliary_output=None):
# Fixed affine layer computes only one vector, there are no intermediate
# vectors.
assert auxiliary_output is None
return self.name
def output_dim(self, auxiliary_output=None):
output_dim = self.config['dim']
# If not set, the output-dim defaults to the input-dim.
if output_dim <= 0:
output_dim = self.descriptors['input']['dim']
return output_dim
def get_full_config(self):
ans = []
config_lines = self._generate_config()
for line in config_lines:
for config_name in ['ref', 'final']:
# we do not support user specified matrices in this layer
# so 'ref' and 'final' configs are the same.
ans.append((config_name, line))
if self.config['include-in-init']:
ans.append(('init', line))
return ans
def _generate_config(self):
# note: each value of self.descriptors is (descriptor, dim,
# normalized-string, output-string).
# by 'descriptor_final_string' we mean a string that can appear in
# config-files, i.e. it contains the 'final' names of nodes.
descriptor_final_string = self.descriptors['input']['final-string']
input_dim = self.descriptors['input']['dim']
output_dim = self.output_dim()
transform_file = self.config['affine-transform-file']
idct_mat = common_lib.compute_idct_matrix(
input_dim, output_dim, self.config['cepstral-lifter'])
# append a zero column to the matrix, this is the bias of the fixed
# affine component
for n in range(0, output_dim):
idct_mat[n].append(0)
common_lib.write_kaldi_matrix(transform_file, idct_mat)
configs = []
# write the 'real' component to final.config
line = 'component name={0} type=FixedAffineComponent matrix={1}'.format(
self.name, transform_file)
configs.append(line)
line = 'component-node name={0} component={0} input={1}'.format(
self.name, descriptor_final_string)
configs.append(line)
return configs
class XconfigExistingLayer(XconfigLayerBase):
"""
This class is used to internally convert component-nodes in an existing
model into lines like
'existing name=tdnn1.affine dim=40'.
Layers of this type are not presented in any actual xconfig or config
files, but are created internally for all component nodes
in an existing neural net model to use as input to other layers in xconfig.
(i.e. get_model_component_info function, which is called in
steps/nnet3/xconfig_to_configs.py, parses the name and
dimension of component-nodes used in the existing model
using the nnet3-info and returns a list of 'existing' layers.)
This class is useful in cases like transferring existing model
and using {input, output, component}-nodes in this model as
input to new layers.
"""
def __init__(self, first_token, key_to_value, prev_names=None):
assert first_token == 'existing'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
self.config = { 'dim': -1}
def check_configs(self):
if self.config['dim'] <= 0:
raise RuntimeError("Dimension of existing-layer '{0}'"
"should be positive.".format(self.name))
def get_input_descriptor_names(self):
return [] # there is no 'input' field in self.config.
def output_name(self, auxiliary_outputs=None):
# there are no auxiliary outputs as this layer will just pass the input
assert auxiliary_outputs is None
return self.name
def output_dim(self, auxiliary_outputs=None):
# there are no auxiliary outputs as this layer will just pass the input
assert auxiliary_outputs is None
return self.config['dim']
def get_full_config(self):
# unlike other layers the existing layers should not to be printed in
# any '*.config'
ans = []
return ans
class XconfigSpecAugmentLayer(XconfigLayerBase):
"""This class is for parsing lines like
'spec-augment-layer name=spec-augment freq-max-proportion=0.5 time-zeroed-proportion=0.2 time-mask-max-frames=10'
which will produce a component of type GeneralDropoutComponent (to do the
frequency-domain part) and then one of type SpecaugmentTimeMaskComponent (to
do the time part).
Parameters of the class, and their defaults:
input='[-1]' [Descriptor giving the input of the layer.]
freq-max-proportion=0.5 [The maximum proportion of the frequency space that
might be zeroed out]
time-zeroed-proportion=0.2 [The proportion of time frames that will be zeroed
out]
time-mask-max-frames=20 [The maximum length of a zeroed region in the time
axis, in frames.]
include-in-init=false [You should set this to true if this precedes a
`fixed-affine-layer` that is to be initialized
via LDA]
"""
def __init__(self, first_token, key_to_value, prev_names=None):
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
self.config = {'input': '[-1]',
'freq-max-proportion': 0.5,
'time-zeroed-proportion': 0.2,
'time-mask-max-frames': 20,
'include-in-init': False}
def check_configs(self):
assert (self.config['freq-max-proportion'] > 0.0 and self.config['freq-max-proportion'] < 1.0
and self.config['time-zeroed-proportion'] > 0.0 and self.config['time-zeroed-proportion'] < 1.0
and self.config['time-mask-max-frames'] >= 1)
def output_name(self, auxiliary_output=None):
assert auxiliary_output is None
return '{0}.time-mask'.format(self.name)
def output_dim(self, auxiliary_output=None):
assert auxiliary_output is None
input_dim = self.descriptors['input']['dim']
return input_dim
def get_full_config(self):
ans = []
config_lines = self._generate_config()
for line in config_lines:
for config_name in ['ref', 'final']:
# we do not support user specified matrices in this layer
# so 'ref' and 'final' configs are the same.
ans.append((config_name, line))
if self.config['include-in-init']:
ans.append(('init', line))
return ans
def _generate_config(self):
# by 'descriptor_final_string' we mean a string that can appear in
# config-files, i.e. it contains the 'final' names of nodes.
input_desc = self.descriptors['input']['final-string']
input_dim = self.descriptors['input']['dim']
freq_max_proportion = self.config['freq-max-proportion']
time_zeroed_proportion = self.config['time-zeroed-proportion']
time_mask_max_frames = self.config['time-mask-max-frames']
configs = []
line = ('component name={0}.freq-mask type=GeneralDropoutComponent dim={1} specaugment-max-proportion={2}'.format(
self.name, input_dim, freq_max_proportion))
configs.append(line)
line = ('component-node name={0}.freq-mask component={0}.freq-mask input={1}'.format(
self.name, input_desc))
configs.append(line)
line = ('component name={0}.time-mask type=SpecAugmentTimeMaskComponent dim={1} '
'zeroed-proportion={2} time-mask-max-frames={3}'.format(
self.name, input_dim, time_zeroed_proportion, time_mask_max_frames))
configs.append(line)
line = ('component-node name={0}.time-mask component={0}.time-mask input={0}.freq-mask'.format(
self.name))
configs.append(line)
return configs
def test_layers():
# for some config lines that should be printed the same way as they
# are read, check that this is the case.
for x in ['input name=input dim=30']:
assert str(config_line_to_object(x, [])) == x