convolution.py
59.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
# Copyright 2018 Johns Hopkins University (Author: Dan Povey)
# 2016 Vijayaditya Peddinti
# Apache 2.0.
""" This module has the implementation of convolutional layers.
"""
from __future__ import print_function
from __future__ import division
import math
import re
import sys
from libs.nnet3.xconfig.basic_layers import XconfigLayerBase
# This class is for lines like the following:
#
# conv-batchnorm-layer name=conv2 height-in=40 height-out=40 \
# num-filters-out=64 height-offsets=-1,0,1 time-offsets=-1,0,1 \
# required-time-offsets=0
# or (with NormalizeLayer instead of batch-norm, and with subsampling on the height axis):
# conv-renorm-layer name=conv3 height-in=40 height-out=20 \
# height-subsample-out=2 num-filters-out=128 height-offsets=-1,0,1 \
# time-offsets=-1,0,1 required-time-offsets=0
#
# You don't specify subsampling on the time axis explicitly, it's implicit
# in the 'time-offsets' which are the same as the splicing indexes in a TDNN,
# and which, unlike the height offsets, operate relative to a fixed clock,
# so that after subsampling by a factor of 2, we'd expect all time-offsets
# of subsequent layers to be a factor of 2. You don't specify the input
# num-filters either; it's worked out from the input height and the input dim.
#
# The layer-name encodes the use (or not) of batch normalization, so that if you
# want to skip batch normalization you could just call it 'conv-layer'.
#
# If batch-normalization is used, it's *spatial* batch-normalization, meaning
# that the offset and scale is specific to the output filter, but shared across
# all time and height offsets.
#
# Most of the configuration values mirror same-named values in class
# TimeHeightConvolutionComponent, and for a deeper understanding of what's going
# on you should look at the comment by its declaration, in
# src/nnet3/nnet-convolutional-component.h.
#
# Parameters of the class, and their defaults if they have defaults:
#
# input='[-1]' Descriptor giving the input of the layer.
# height-in The height of the input image, e.g. 40 if the input
# is MFCCs. The num-filters-in is worked out as
# (dimension of input) / height-in. If the preceding
# layer is a convolutional layer, height-in should be
# the same as the height-out of the preceding layer.
# height-subsample-out=1 The height subsampling factor, will be e.g. 2 if you
# want to subsample by a factor of 2 on the height
# axis.
# height-out The height of the output image. This will normally
# be <= (height-in / height-subsample-out).
# Zero-padding on the height axis may be implied by a
# combination of this and height-offsets-in, e.g. if
# height-out==height-in and height-subsample-out=1
# and height-offsets=-2,-1,0,1 then we'd be padding
# by 2 pixels on the bottom and 1 on the top; see
# comments in nnet-convolutional-layers.h for more
# details.
# height-offsets The offsets on the height axis that define what
# inputs require for each output pixel; will
# often be something like -1,0,1 (if zero-padding
# on height axis) or 0,1,2 otherwise. These are
# comparable to TDNN splicing offsets; e.g. if
# height-offsets=-1,0,1 then height 10 at the output
# would take input from heights 9,10,11 at the input.
# num-filters-out The number of output filters. The output dimension
# of this layer is num-filters-out * height-out; the
# filter dim varies the fastest (filter-stride == 1).
# time-offsets The input offsets on the time axis; these are
# interpreted just like the splicing indexes in TDNNs.
# E.g. if time-offsets=-2,0,2 then time 100 at the
# output would require times 98,100,102 at the input.
# required-time-offsets The subset of 'time-offsets' that are required in
# order to produce an output; if the set has fewer
# elements than 'time-offsets' then it implies some
# kind of zero-padding on the time axis is allowed.
# Defaults to the same as 'time-offsets'. For speech
# tasks we recommend not to set this, as the normal
# padding approach is to pad with copies of the
# first/last frame, which is handled automatically in
# the calling code.
# target-rms=1.0 Only applicable if the layer type is
# conv-batchnorm-layer or
# conv-normalize-layer. This will affect the
# scaling of the output features (larger -> larger),
# and sometimes we set target-rms=0.5 for the layer
# prior to the final layer to make the final layer
# train more slowly.
# self-repair-scale=2.0e-05 This affects the ReLu's. It is a scale on the
# 'self-repair' mechanism that nudges the inputs to the
# ReLUs into the appropriate range in cases where
# the unit is active either too little of the time
# (<10%) or too much of the time (>90%).
#
# The following initialization and natural-gradient related options are, if
# provided, passed through to the config file; if not, they are left at the
# defaults in the code. See nnet-convolutional-component.h for more information.
#
# param-stddev, bias-stddev, max-change, learning-rate-factor (float)
# use-natural-gradient (bool)
# rank-in, rank-out (int)
# num-minibatches-history (float)
# alpha-in, alpha-out (float)
# the following is also passed into the convolution components, if specified:
# l2-regularize (float)
class XconfigConvLayer(XconfigLayerBase):
def __init__(self, first_token, key_to_value, prev_names = None):
for operation in first_token.split('-')[:-1]:
assert operation in ['conv', 'renorm', 'batchnorm', 'relu',
'noconv', 'dropout', 'so']
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
self.config = {'input':'[-1]',
'height-in':-1,
'height-subsample-out':1,
'height-out':-1,
'height-offsets':'',
'num-filters-out':-1,
'time-offsets':'',
'required-time-offsets':'',
'target-rms':1.0,
'self-repair-scale': 2.0e-05,
'self-repair-lower-threshold': 0.05,
# the following are not really inspected by this level of
# code, just passed through (but not if left at '').
'param-stddev':'', 'bias-stddev':'',
'max-change': 0.75, 'learning-rate-factor':'',
'use-natural-gradient':'',
'rank-in':'', 'rank-out':'', 'num-minibatches-history':'',
'alpha-in':'', 'alpha-out':'', 'l2-regularize':'',
'dropout-proportion': 0.5}
def set_derived_configs(self):
# sets 'num-filters-in'.
input_dim = self.descriptors['input']['dim']
height_in = self.config['height-in']
if height_in <= 0:
raise RuntimeError("height-in must be specified");
if input_dim % height_in != 0:
raise RuntimeError("Input dimension {0} is not a multiple of height-in={1}".format(
input_dim, height_in))
self.config['num-filters-in'] = input_dim // height_in
# Check whether 'str' is a sorted, unique, nonempty list of integers, like -1,0,1.,
# returns true if so.
def check_offsets_var(self, str):
try:
a = [ int(x) for x in str.split(",") ]
if len(a) == 0:
return False
for i in range(len(a) - 1):
if a[i] >= a[i+1]:
return False
return True
except:
return False
def check_configs(self):
# Do some basic checking of the configs. The component-level code does
# some more thorough checking, but if you set the height-out too small it
# prints it as a warning, which the user may not see, so at a minimum we
# want to check for that here.
height_subsample_out = self.config['height-subsample-out']
height_in = self.config['height-in']
height_out = self.config['height-out']
if height_subsample_out <= 0:
raise RuntimeError("height-subsample-out has invalid value {0}.".format(
height_subsample_out))
# we already checked height-in in set_derived_configs.
if height_out <= 0:
raise RuntimeError("height-out has invalid value {0}.".format(
height_out))
if height_out * height_subsample_out > height_in:
raise RuntimeError("The combination height-in={0}, height-out={1} and "
"height-subsample-out={2} does not look right "
"(height-out too large).".format(
height_in, height_out, height_subsample_out))
height_offsets = self.config['height-offsets']
time_offsets = self.config['time-offsets']
required_time_offsets = self.config['required-time-offsets']
if not 'noconv' in self.layer_type.split('-'):
# only check height-offsets, time-offsets and required-time-offsets if there
# is actually a convolution in this layer.
if not self.check_offsets_var(height_offsets):
raise RuntimeError("height-offsets={0} is not valid".format(height_offsets))
if not self.check_offsets_var(time_offsets):
raise RuntimeError("time-offsets={0} is not valid".format(time_offsets))
if required_time_offsets != "" and not self.check_offsets_var(required_time_offsets):
raise RuntimeError("required-time-offsets={0} is not valid".format(
required_time_offsets))
if height_out * height_subsample_out < \
height_in - len(height_offsets.split(',')):
raise RuntimeError("The combination height-in={0}, height-out={1} and "
"height-subsample-out={2} and height-offsets={3} "
"does not look right (height-out too small).")
if self.config['target-rms'] <= 0.0:
raise RuntimeError("Config value target-rms={0} is not valid".format(
self.config['target_rms']))
def auxiliary_outputs(self):
return []
def output_name(self, auxiliary_output = None):
assert auxiliary_output is None
# note: the [:-1] is to remove the '-layer'.
operations = self.layer_type.split('-')[:-1]
if operations[-1] == 'noconv':
operations = operations[:-1]
assert len(operations) >= 1
last_operation = operations[-1]
assert last_operation in ['relu', 'conv', 'renorm', 'batchnorm', 'dropout', 'so']
# we'll return something like 'layer1.batchnorm'.
return '{0}.{1}'.format(self.name, last_operation)
def output_dim(self, auxiliary_output = None):
assert auxiliary_output is None
return self.config['num-filters-out'] * self.config['height-out']
def get_full_config(self):
ans = []
config_lines = self._generate_cnn_config()
for line in config_lines:
for config_name in ['ref', 'final']:
# we do not support user specified matrices in CNN initialization
# so 'ref' and 'final' configs are the same.
ans.append((config_name, line))
return ans
# convenience function to generate the CNN config
def _generate_cnn_config(self):
configs = []
name = self.name
# These 3 variables will be updated as we add components.
cur_num_filters = self.config['num-filters-in']
cur_height = self.config['height-in']
cur_descriptor = self.descriptors['input']['final-string']
# note: the [:-1] is to remove the '-layer'.
operations = self.layer_type.split('-')[:-1]
if operations[-1] == 'noconv':
operations = operations[:-1]
# e.g.:
# operations = [ 'conv', 'relu', 'batchnorm' ]
# or:
# operations = [ 'relu', 'conv', 'renorm' ]
for operation in operations:
if operation == 'conv':
a = []
for opt_name in [
'param-stddev', 'bias-stddev', 'use-natural-gradient',
'max-change', 'rank-in', 'rank-out', 'num-minibatches-history',
'alpha-in', 'alpha-out', 'num-filters-in', 'num-filters-out',
'height-in','height-out', 'height-subsample-out',
'height-offsets', 'time-offsets', 'required-time-offsets',
'learning-rate-factor', 'l2-regularize' ]:
value = self.config[opt_name]
if value != '':
a.append('{0}={1}'.format(opt_name, value))
conv_opts = ' '.join(a)
configs.append('component name={0}.conv type=TimeHeightConvolutionComponent '
'{1}'.format(name, conv_opts))
configs.append('component-node name={0}.conv component={0}.conv '
'input={1}'.format(name, cur_descriptor))
cur_num_filters = self.config['num-filters-out']
cur_height = self.config['height-out']
elif operation == 'batchnorm':
configs.append('component name={0}.batchnorm type=BatchNormComponent dim={1} '
'block-dim={2} target-rms={3}'.format(
name, cur_num_filters * cur_height, cur_num_filters,
self.config['target-rms']))
configs.append('component-node name={0}.batchnorm component={0}.batchnorm '
'input={1}'.format(name, cur_descriptor))
elif operation == 'renorm':
configs.append('component name={0}.renorm type=NormalizeComponent '
'dim={1} target-rms={2}'.format(
name, cur_num_filters * cur_height,
self.config['target-rms']))
configs.append('component-node name={0}.renorm component={0}.renorm '
'input={1}'.format(name, cur_descriptor))
elif operation == 'relu':
configs.append('component name={0}.relu type=RectifiedLinearComponent '
'dim={1} block-dim={2} self-repair-scale={3} '
'self-repair-lower-threshold={4}'.format(
name, cur_num_filters * cur_height, cur_num_filters,
self.config['self-repair-scale'],
self.config['self-repair-lower-threshold']))
configs.append('component-node name={0}.relu component={0}.relu '
'input={1}'.format(name, cur_descriptor))
elif operation == 'dropout':
configs.append('component name={0}.dropout type=DropoutComponent '
'dim={1} dropout-proportion={2}'.format(
name, cur_num_filters * cur_height,
self.config['dropout-proportion']))
configs.append('component-node name={0}.dropout component={0}.dropout '
'input={1}'.format(name, cur_descriptor))
elif operation == 'so':
configs.append('component name={0}.so type=ScaleAndOffsetComponent '
'dim={1} block-dim={2}'.format(
name, cur_num_filters * cur_height, cur_num_filters))
configs.append('component-node name={0}.so component={0}.so '
'input={1}'.format(name, cur_descriptor))
else:
raise RuntimeError("Un-handled operation type: " + operation)
cur_descriptor = '{0}.{1}'.format(name, operation)
return configs
# This class is for lines like the following:
#
# res-block name=res1 num-filters=64 height=32 time-period=1
#
# It implements a residual block as in ResNets, with pre-activation, and with
# some small differences-- basically, instead of adding the input to the output,
# we put a convolutional layer in there but initialize it to the unit matrix and
# if you want you can give it a relatively small (or even zero) learning rate
# and max-change. And there is batch-norm in that path also.
#
# The number of filters is the same on the input and output; it is actually
# redundant to write it in the config file, because given that we know the
# height, we can work it out from the dimension of the input (as dimension =
# height * num-filters). But we allow it to be specified anyway, for clarity.
#
# Note: the res-block does not support subsampling or changing the number of
# filters. If you want to do that, we recommend that you should do it with a
# single relu-batchnorm-conv-layer.
#
# Here are the most important configuration values, with defaults shown if
# defaults exist:
#
# input='[-1]' Descriptor giving the input of the layer.
# height The input and output height of the image, e.g. 40. Note: the width
# is associated with the time dimension and is dealt with
# implicitly, so it's not specified here.
# num-filters The number of filters on the input and output, e.g. 64.
# It does not have to be specified; if it is not specified,
# we work it out from the input dimension.
# num-bottleneck-filters If specified then this will be a 'bottleneck'
# ResBlock, in which there is a 1x1 convolution from
# num-filters->num-bottleneck-filters, a 3x3 convolution
# from num-bottleneck-filters->num-bottleneck-filters, and
# a 1x1 convolution from num-bottleneck-filters->num-filters.
#
# time-period=1 Think of this as the stride in the time dimension. At the
# input of the network will always have time-period=1; then
# after subsampling once in time we'd have time-period=2; then
# after subsampling again we'd have time-period=4. Because of
# the way nnet3 works, subsampling on the time axis is an
# implicit, not explicit, operation.
# height-period=1 This will almost always be left at the default (1). It is
# analogous to time-period, but because the height, unlike the
# time, is explicitly subsampled, in normal topologies this should
# be left at 1.
#
# bypass-source=noop
# The output of this component is Sum(convolution, x), and
# this option controls what 'x' is. There are 3 options
# here: 'noop', 'input', 'relu' or 'batchnorm'. 'noop' is
# equivalent to 'input' in what it computes; it just
# inserts a 'noop' component in order to make the
# computation more efficient. For both 'noop' and
# 'input', x is the input to this component. If
# bypass-source=relu then we use the relu of the
# input; if 'batchnorm', then we use the relu+batchnorm of
# the input.
# allow-zero-padding=true By default this will allow zero-padding in the time
# dimension, meaning that you don't need extra frames at
# the input to compute the output. There may be ASR
# applications where you want to pad in the time dimension
# with repeats of the first or last frame (as we do for
# TDNNs), where it would be appropriate to write
# allow-zero-padding=false. Note: the way we have
# set it up, it does zero-padding on the height axis
# regardless
#
# Less important config variables:
# self-repair-scale=2.0e-05 This affects the ReLu's. It is a scale on the
# 'self-repair' mechanism that nudges the inputs to the
# ReLUs into the appropriate range in cases where
# the unit is active either too little of the time
# (<10%) or too much of the time (>90%).
# max-change=0.75 Max-parameter-change constant (per minibatch)
# used for convolutional components.
#
#
# The following natural-gradient-related configuration variables are passed in
# to the convolution components, if specified:
# use-natural-gradient (bool)
# rank-in, rank-out (int)
# num-minibatches-history (float)
# alpha-in, alpha-out (float)
# the following is also passed into the convolution components, if specified:
# l2-regularize (float)
#
class XconfigResBlock(XconfigLayerBase):
def __init__(self, first_token, key_to_value, prev_names = None):
assert first_token == 'res-block'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
self.config = {'input':'[-1]',
'height':-1,
'num-filters':-1,
'num-bottleneck-filters':-1,
'time-period':1,
'height-period':1,
'self-repair-scale': 2.0e-05,
'self-repair-lower-threshold1': 0.05,
'self-repair-lower-threshold2': 0.05,
'self-repair-lower-threshold3': 0.05,
'max-change': 0.75,
'allow-zero-padding': True,
'bypass-source' : 'noop',
# the following are not really inspected by this level of
# code, just passed through (but not if left at '').
'param-stddev':'', 'bias-stddev':'',
'use-natural-gradient':'',
'rank-in':'', 'rank-out':'',
'num-minibatches-history':'',
'alpha-in':'', 'alpha-out':'', 'l2-regularize':'' }
def set_derived_configs(self):
# set 'num-filters' or check it..
input_dim = self.descriptors['input']['dim']
height = self.config['height']
cur_num_filters = self.config['num-filters']
if cur_num_filters == -1:
if input_dim % height != 0:
raise RuntimeError("Specified image height {0} does not "
"divide the input dim {1}".format(
height, input_dim))
self.config['num-filters'] = input_dim / height
elif input_dim != cur_num_filters * height:
raise RuntimeError("Expected the input-dim to equal "
"height={0} * num-filters={1} = {2}, but "
"it is {3}".format(
height, cur_num_filters,
height * cur_num_filters,
input_dim));
def check_configs(self):
# we checked the dimensions in set_derived_configs.
if not self.config['bypass-source'] in [
'input', 'noop', 'relu', 'batchnorm' ]:
raise RuntimeError("Expected direct-convolution-source to "
"be input, relu or batchnorm, got: {1}".format(
self.config['direct-convolution-source']))
def auxiliary_outputs(self):
return []
def output_name(self, auxiliary_output = None):
bypass_source = self.config['bypass-source']
b = self.config['num-bottleneck-filters']
conv = ('{0}.conv2' if b <= 0 else '{0}.conv3').format(self.name)
if bypass_source == 'input':
residual = self.descriptors['input']['final-string']
elif bypass_source == 'noop':
# we let the noop be the sum of the convolutional part and the
# input, so just return the output of the no-op component.
return '{0}.noop'.format(self.name)
elif bypass_source == 'relu':
residual = '{0}.relu1'.format(self.name)
else:
assert bypass_source == 'batchnorm'
residual = '{0}.batchnorm1'.format(self.name)
return 'Sum({0}, {1})'.format(conv, residual)
def output_dim(self, auxiliary_output = None):
assert auxiliary_output is None
input_dim = self.descriptors['input']['dim']
return input_dim
def get_full_config(self):
ans = []
b = self.config['num-bottleneck-filters']
if b <= 0:
config_lines = self._generate_normal_resblock_config()
else:
config_lines = self._generate_bottleneck_resblock_config()
for line in config_lines:
for config_name in ['ref', 'final']:
# we do not support user specified matrices in CNN initialization
# so 'ref' and 'final' configs are the same.
ans.append((config_name, line))
return ans
# _generate_normal_resblock_config is a convenience function to generate the
# res-block config (the non-bottleneck version).
#
# The main path inside the res-block in the non-bottleneck case is as
# follows:
#
# input -> relu1 -> batchnorm1 -> conv1 -> relu2 -> batchnorm2 -> conv2
#
# We put the relu before the batchnorm because we think it makes more sense;
# because the Torch people seemed to find that this works better
# (https://github.com/gcr/torch-residual-networks/issues/5);
# and because in our batchnorm component we haven't implemented the beta and
# gamma; these would be essential to having it work before relu, but
# when before a convolution or linear component, they add no extra modeling
# power.
#
# The output of the res-block can be the sum of the last convolutional
# component (conv2), with the input. However, the option ('bypass-source')
# controls whether we sum with the raw input, or its relu or relu+batchnorm.
# If the term is going to be the raw input, we give the option ('noop') and
# to cache the output sum via a NoOpComponent)-- because due to how nnet3
# works, if we didn't do this, redundant summing operations would take
# place.
def _generate_normal_resblock_config(self):
configs = []
name = self.name
num_filters = self.config['num-filters']
assert self.config['num-bottleneck-filters'] == -1
height = self.config['height']
input_descriptor = self.descriptors['input']['final-string']
allow_zero_padding = self.config['allow-zero-padding']
height_period = self.config['height-period']
time_period = self.config['time-period']
# input -> relu1 -> batchnorm1 -> conv1 -> relu2 -> batchnorm2 -> conv2
cur_descriptor = input_descriptor
for n in [1, 2]:
# the ReLU
configs.append('component name={0}.relu{1} type=RectifiedLinearComponent '
'dim={2} block-dim={3} self-repair-scale={4} '
'self-repair-lower-threshold={5}'.format(
name, n, num_filters * height, num_filters,
self.config['self-repair-scale'],
self.config['self-repair-lower-threshold{0}'.format(n)]))
configs.append('component-node name={0}.relu{1} component={0}.relu{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.relu{1}'.format(name, n)
# the batch-norm
configs.append('component name={0}.batchnorm{1} type=BatchNormComponent dim={2} '
'block-dim={3}'.format(
name, n, num_filters * height,
num_filters))
configs.append('component-node name={0}.batchnorm{1} component={0}.batchnorm{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.batchnorm{1}'.format(name, n)
# the convolution.
a = []
for opt_name in [
'param-stddev', 'bias-stddev', 'use-natural-gradient',
'max-change', 'rank-in', 'rank-out', 'num-minibatches-history',
'alpha-in', 'alpha-out', 'l2-regularize' ]:
value = self.config[opt_name]
if value != '':
a.append('{0}={1}'.format(opt_name, value))
conv_opts = ('height-in={h} height-out={h} height-offsets=-{hp},0,{hp} '
'time-offsets=-{p},0,{p} '
'num-filters-in={f} num-filters-out={f} {r} {o}'.format(
h=height, hp=height_period, p=time_period, f=num_filters,
r=('required-time-offsets=0' if allow_zero_padding else ''),
o=' '.join(a)))
configs.append('component name={0}.conv{1} type=TimeHeightConvolutionComponent '
'{2}'.format(name, n, conv_opts))
configs.append('component-node name={0}.conv{1} component={0}.conv{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.conv{1}'.format(name, n)
if self.config['bypass-source'] == 'noop':
dim = self.descriptors['input']['dim']
configs.append('component name={0}.noop dim={1} type=NoOpComponent'.format(
name, dim))
configs.append('component-node name={0}.noop component={0}.noop '
'input=Sum({1}, {0}.conv2)'.format(name,
input_descriptor))
# Note: the function 'output_name' is responsible for returning the
# descriptor corresponding to the output of the network.
return configs
# _generate_bottleneck_resblock_config is a convenience function to generate the
# res-block config (this is the bottleneck version, where there is
# a 3x3 kernel with a smaller number of filters than at the input and output,
# sandwiched between two 1x1 kernels.
#
# The main path inside the res-block in the bottleneck case is as follows:
#
# input -> relu1 -> batchnorm1 -> conv1 -> relu2 -> batchnorm2 -> conv2 ->
# relu3 -> batchnorm3 -> conv3
#
# power.
#
# The output of the res-block can be the sum of the last convolutional
# component (conv3), with the input. However we give the option
# ('bypass-source') to sum with the raw input, or its relu or
# relu+batchnorm. If the term is going to be the raw input, we give the
# option ('noop') and to cache the output sum via a NoOpComponent)-- because
# due to how nnet3 works, if we didn't do this, redundant summing operations
# would take place.
def _generate_bottleneck_resblock_config(self):
configs = []
name = self.name
num_filters = self.config['num-filters']
num_bottleneck_filters = self.config['num-bottleneck-filters']
assert num_bottleneck_filters > 0
height = self.config['height']
input_descriptor = self.descriptors['input']['final-string']
allow_zero_padding = self.config['allow-zero-padding']
height_period = self.config['height-period']
time_period = self.config['time-period']
# input -> relu1 -> batchnorm1 -> conv1 -> relu2 -> batchnorm2 -> conv2
cur_descriptor = input_descriptor
cur_num_filters = num_filters
for n in [1, 2, 3]:
# the ReLU
configs.append('component name={0}.relu{1} type=RectifiedLinearComponent '
'dim={2} block-dim={3} self-repair-scale={4} '
'self-repair-lower-threshold={5}'.format(
name, n, cur_num_filters * height, cur_num_filters,
self.config['self-repair-scale'],
self.config['self-repair-lower-threshold{0}'.format(n)]))
configs.append('component-node name={0}.relu{1} component={0}.relu{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.relu{1}'.format(name, n)
# the batch-norm
configs.append('component name={0}.batchnorm{1} type=BatchNormComponent dim={2} '
'block-dim={3}'.format(
name, n, cur_num_filters * height,
cur_num_filters))
configs.append('component-node name={0}.batchnorm{1} component={0}.batchnorm{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.batchnorm{1}'.format(name, n)
# the convolution.
a = []
for opt_name in [
'param-stddev', 'bias-stddev', 'use-natural-gradient',
'max-change', 'rank-in', 'rank-out', 'num-minibatches-history',
'alpha-in', 'alpha-out', 'l2-regularize' ]:
value = self.config[opt_name]
if value != '':
a.append('{0}={1}'.format(opt_name, value))
height_offsets = ('-{hp},0,{hp}'.format(hp=height_period) if n == 2 else '0')
time_offsets = ('-{t},0,{t}'.format(t=time_period) if n == 2 else '0')
next_num_filters = (num_filters if n == 3 else num_bottleneck_filters)
conv_opts = ('height-in={h} height-out={h} height-offsets={ho} time-offsets={to} '
'num-filters-in={fi} num-filters-out={fo} {r} {o}'.format(
h=height, ho=height_offsets, to=time_offsets,
fi=cur_num_filters, fo=next_num_filters,
r=('required-time-offsets=0' if allow_zero_padding else ''),
o=' '.join(a)))
configs.append('component name={0}.conv{1} type=TimeHeightConvolutionComponent '
'{2}'.format(name, n, conv_opts))
configs.append('component-node name={0}.conv{1} component={0}.conv{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.conv{1}'.format(name, n)
cur_num_filters = next_num_filters
if self.config['bypass-source'] == 'noop':
dim = self.descriptors['input']['dim']
configs.append('component name={0}.noop dim={1} type=NoOpComponent'.format(
name, dim))
configs.append('component-node name={0}.noop component={0}.noop '
'input=Sum({1}, {0}.conv3)'.format(name,
input_descriptor))
# Note: the function 'output_name' is responsible for returning the
# descriptor corresponding to the output of the network.
return configs
# This class is for lines like the following:
#
# res2-block name=res1 num-filters=64 height=32 time-period=1
#
# It is a residual block with post-activations, which does not support
# downsampling (strided convolution) or changing the number of filters;
# for that, see res2-downsample-block.
# It's a pretty standard res-block, more standard than "res-block" (XconfigResBlock).
#
# The number of filters is the same on the input and output; it is actually
# redundant to write it in the config file, because given that we know the
# height, we can work it out from the dimension of the input (as dimension =
# height * num-filters). But we allow it to be specified anyway, for clarity.
#
# Here are the most important configuration values, with defaults shown if
# defaults exist:
#
# input='[-1]' Descriptor giving the input of the layer.
# height The input and output height of the image, e.g. 40. Note: the width
# is associated with the time dimension and is dealt with
# implicitly, so it's not specified here.
# num-filters The number of filters on the input and output, e.g. 64.
# It does not have to be specified; if it is not specified,
# we work it out from the input dimension.
# num-bottleneck-filters If specified then this will be a 'bottleneck'
# ResBlock, in which there is a 1x1 convolution from
# num-filters->num-bottleneck-filters, a 3x3 convolution
# from num-bottleneck-filters->num-bottleneck-filters, and
# a 1x1 convolution from num-bottleneck-filters->num-filters.
# time-period=1 Think of this as the stride in the time dimension. At the
# input of the network will always have time-period=1; then
# after subsampling once in time we'd have time-period=2; then
# after subsampling again we'd have time-period=4. Because of
# the way nnet3 works, subsampling on the time axis is an
# implicit, not explicit, operation.
# allow-zero-padding=true By default this will allow zero-padding in the time
# dimension, meaning that you don't need extra frames at
# the input to compute the output. There may be ASR
# applications where you want to pad in the time dimension
# with repeats of the first or last frame (as we do for
# TDNNs), where it would be appropriate to write
# allow-zero-padding=false. Note: the way we have
# set it up, it does zero-padding on the height axis
# regardless
#
# Less important config variables:
# self-repair-scale=2.0e-05 This affects the ReLu's. It is a scale on the
# 'self-repair' mechanism that nudges the inputs to the
# ReLUs into the appropriate range in cases where
# the unit is active either too little of the time
# (<10%) or too much of the time (>90%).
# max-change=0.75 Max-parameter-change constant (per minibatch)
# used for convolutional components.
#
#
# The following natural-gradient-related configuration variables are passed in
# to the convolution components, if specified:
# use-natural-gradient (bool)
# rank-in, rank-out (int)
# num-minibatches-history (float)
# alpha-in, alpha-out (float)
# the following is also passed into the convolution components, if specified:
# l2-regularize (float)
class XconfigRes2Block(XconfigLayerBase):
def __init__(self, first_token, key_to_value, prev_names = None):
assert first_token == 'res2-block'
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
self.config = {'input':'[-1]',
'height':-1, # sets height-in and height-out
'height-in':-1,
'height-out':-1,
'num-filters':-1, # interpreted as num-filters-out.
'num-bottleneck-filters':-1,
'time-period':1,
'self-repair-scale': 2.0e-05,
'self-repair-lower-threshold1': 0.05,
'self-repair-lower-threshold2': 0.05,
'self-repair-lower-threshold3': 0.05,
'max-change': 0.75,
'allow-zero-padding': True,
# the following are not really inspected by this level of
# code, just passed through (but not if left at '').
'param-stddev':'', 'bias-stddev':'',
'use-natural-gradient':'',
'rank-in':'', 'rank-out':'',
'num-minibatches-history':'',
'alpha-in':'', 'alpha-out':'',
'l2-regularize':'' }
def set_derived_configs(self):
input_dim = self.descriptors['input']['dim']
if not ((self.config['height'] > 0 and self.config['height-in'] == -1 and
self.config['height-out'] == -1) or
(self.config['height-out'] > 0 and self.config['height-in'] > 0)):
raise RuntimeError("You must specify height, or height-in and height-out, for res2-block.")
if not (self.config['height-in'] > 0 and self.config['height-out'] > 0):
height = self.config['height']
if not height > 0:
raise RuntimeError("You must specify either height, or height-in and height-out, for "
"res2-block.")
self.config['height-in'] = height
self.config['height-out'] = height
height_in = self.config['height-in']
if input_dim % height_in != 0:
raise RuntimeError("Specified input image height {0} does not "
"divide the input dim {1}".format(
height_in, input_dim))
self.config['num-filters'] = input_dim / height
def check_configs(self):
if self.config['num-filters'] == -1:
raise RuntimeError("You must specify num-filters for res2-block.")
def auxiliary_outputs(self):
return []
def output_name(self, auxiliary_output = None):
b = self.config['num-bottleneck-filters']
return ('{0}.relu2' if b <= 0 else '{0}.relu3').format(self.name)
def output_dim(self, auxiliary_output = None):
assert auxiliary_output is None
return self.config['height-out'] * self.config['num-filters']
def get_full_config(self):
ans = []
b = self.config['num-bottleneck-filters']
if b <= 0:
config_lines = self._generate_normal_resblock_config()
else:
config_lines = self._generate_bottleneck_resblock_config()
for line in config_lines:
for config_name in ['ref', 'final']:
# we do not support user specified matrices in CNN initialization
# so 'ref' and 'final' configs are the same.
ans.append((config_name, line))
return ans
# _generate_normal_resblock_config is a convenience function to generate the
# res-block config (the non-bottleneck version).
#
# The main path inside the res-block in the non-bottleneck case is as
# follows:
#
# input -> conv1 -> batchnorm1 -> scaleoffset1 -> relu1 -> conv2 -> batchnorm2 -> scaleoffset2 -> relu2
#
# where the 'scaleoffsetN' are ScaleAndOffsetComponent, which conventionally would be
# considered part of the BatchNorm.
#
# The relu2 actually sees the sum of the input and 'scaleoffset2'-- which gives us the bypass
# connection.
def _generate_normal_resblock_config(self):
configs = []
name = self.name
assert self.config['num-bottleneck-filters'] == -1
input_dim = self.descriptors['input']['dim']
height_in = self.config['height-in']
height_out = self.config['height-out']
time_period_out = self.config['time-period']
if not input_dim % height_in == 0:
raise RuntimeError("input-dim {0} does not divide height-in {1}".format(
input_dim, height_in))
num_filters_in = input_dim / height_in
num_filters_out = self.config['num-filters']
if height_out != height_in:
if height_out < height_in / 2 - 1 or height_out > height_in / 2 + 1:
raise RuntimeError("Expected height-out to be about half height-in, or the same: "
"height-in={0} height-out={1}".format(height_in, height_out))
if not time_period_out % 2 == 0:
raise RuntimeError("Expected time-period to be a multiple of 2 if you are subsampling "
"on height.")
time_period_in = time_period_out / 2
height_subsample = 2
else:
time_period_in = time_period_out
height_subsample = 1
cur_time_period = time_period_in
cur_num_filters = num_filters_in
cur_height = height_in
input_descriptor = self.descriptors['input']['final-string']
allow_zero_padding = self.config['allow-zero-padding']
if height_subsample == 1 and num_filters_in == num_filters_out:
bypass_descriptor = input_descriptor
else:
bypass_descriptor = '{0}.conv_bypass'.format(name)
cur_descriptor = input_descriptor
# get miscellaneous convolution options passed in from the xconfig line
a = []
for opt_name in [
'param-stddev', 'bias-stddev', 'use-natural-gradient',
'max-change', 'rank-in', 'rank-out', 'num-minibatches-history',
'alpha-in', 'alpha-out', 'l2-regularize' ]:
value = self.config[opt_name]
if value != '':
a.append('{0}={1}'.format(opt_name, value))
misc_conv_opts = ' '.join(a)
for n in [1, 2]:
# the convolution.
conv_opts = ('height-in={hi} height-out={ho} height-offsets=-1,0,1 '
'height-subsample-out={hs} '
'time-offsets=-{p},0,{p} '
'num-filters-in={fi} num-filters-out={fo} {r} {o}'.format(
hi=cur_height, ho=height_out,
p=cur_time_period,
hs=(height_subsample if n == 1 else 1),
fi=cur_num_filters,
fo=num_filters_out,
r=('required-time-offsets=0' if allow_zero_padding else ''),
o=misc_conv_opts))
configs.append('component name={0}.conv{1} type=TimeHeightConvolutionComponent '
'{2}'.format(name, n, conv_opts))
configs.append('component-node name={0}.conv{1} component={0}.conv{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.conv{1}'.format(name, n)
cur_num_filters = num_filters_out
cur_height = height_out
cur_time_period = time_period_out
# the batch-norm
configs.append('component name={0}.batchnorm{1} type=BatchNormComponent dim={2} '
'block-dim={3}'.format(
name, n, cur_num_filters * cur_height,
cur_num_filters))
configs.append('component-node name={0}.batchnorm{1} component={0}.batchnorm{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.batchnorm{1}'.format(name, n)
# the scale-and-offset
configs.append('component name={0}.scaleoffset{1} type=ScaleAndOffsetComponent dim={2} '
'block-dim={3}'.format(
name, n, cur_num_filters * cur_height,
cur_num_filters))
configs.append('component-node name={0}.scaleoffset{1} component={0}.scaleoffset{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.scaleoffset{1}'.format(name, n)
if n == 2:
# the bypass connection
cur_descriptor = 'Sum({0}, {1})'.format(cur_descriptor, bypass_descriptor)
# the ReLU
configs.append('component name={0}.relu{1} type=RectifiedLinearComponent '
'dim={2} block-dim={3} self-repair-scale={4} '
'self-repair-lower-threshold={5}'.format(
name, n, cur_num_filters * cur_height, cur_num_filters,
self.config['self-repair-scale'],
self.config['self-repair-lower-threshold{0}'.format(n)]))
configs.append('component-node name={0}.relu{1} component={0}.relu{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.relu{1}'.format(name, n)
if bypass_descriptor != input_descriptor:
# We need to add the 1x1 bypass convolution because we're either doing height
# subsampling or changing the number of filters.
conv_opts = ('height-in={hi} height-out={ho} height-offsets=0 '
'time-offsets=0 height-subsample-out={hs} '
'num-filters-in={fi} num-filters-out={fo} {o}'.format(
hi=height_in, ho=height_out, hs=height_subsample,
fi=num_filters_in, fo=num_filters_out, o=misc_conv_opts))
configs.append('component name={0}.conv_bypass type=TimeHeightConvolutionComponent '
'{1}'.format(name, conv_opts))
configs.append('component-node name={0}.conv_bypass component={0}.conv_bypass '
'input={1}'.format(name, input_descriptor))
# Note: the function 'output_name' is responsible for returning the
# descriptor corresponding to the output of the network, which in
# this case would be '{0}.relu2'.format(name).
return configs
# _generate_bottleneck_resblock_config is a convenience function to generate the
# res-block config (this is the bottleneck version, where there is
# a 3x3 kernel with a smaller number of filters than at the input and output,
# sandwiched between two 1x1 kernels.
#
# The main path inside the res-block in the bottleneck case is as follows:
#
# input -> conv1 -> batchnorm1 -> scaleoffset1 -> relu1 ->
# conv2 -> batchnorm2 -> scaleoffset2 -> relu2 ->
# conv3 -> batchnorm3 -> scaleoffset3 -> relu3
#
# but the relu3 takes as its input the sum of 'input' and 'scaleoffset3'.
#
def _generate_bottleneck_resblock_config(self):
configs = []
name = self.name
num_bottleneck_filters = self.config['num-bottleneck-filters']
assert num_bottleneck_filters > 0
input_dim = self.descriptors['input']['dim']
height_in = self.config['height-in']
height_out = self.config['height-out']
input_descriptor = self.descriptors['input']['final-string']
allow_zero_padding = self.config['allow-zero-padding']
time_period_out = self.config['time-period']
if not input_dim % height_in == 0:
raise RuntimeError("input-dim={0} does not divide height-in={1}".format(
input_dim, height_in))
num_filters_in = input_dim / height_in
num_filters_out = self.config['num-filters']
if height_out != height_in:
if height_out < height_in / 2 - 1 or height_out > height_in / 2 + 1:
raise RuntimeError("Expected height-out to be about half height-in, or the same: "
"height-in={0} height-out={1}".format(height_in, height_out))
height_subsample = 2
else:
height_subsample = 1
cur_descriptor = input_descriptor
cur_num_filters = num_filters_in
cur_height = height_in
if height_subsample == 1 and num_filters_in == num_filters_out:
bypass_descriptor = input_descriptor
else:
bypass_descriptor = '{0}.conv_bypass'.format(name)
# get miscellaneous convolution options passed in from the xconfig line
a = []
for opt_name in [
'param-stddev', 'bias-stddev', 'use-natural-gradient',
'max-change', 'rank-in', 'rank-out', 'num-minibatches-history',
'alpha-in', 'alpha-out', 'l2-regularize' ]:
value = self.config[opt_name]
if value != '':
a.append('{0}={1}'.format(opt_name, value))
misc_conv_opts = ' '.join(a)
for n in [1, 2, 3]:
# the convolution.
height_offsets = ('-1,0,1' if n == 2 else '0')
this_height_subsample = height_subsample if n == 1 else 1
time_offsets = ('-{t},0,{t}'.format(t=time_period_out) if n == 2 else '0')
next_num_filters = (num_filters_out if n == 3 else num_bottleneck_filters)
conv_opts = ('height-in={h_in} height-out={h_out} height-offsets={ho} time-offsets={to} '
'num-filters-in={fi} num-filters-out={fo} height-subsample-out={hs} '
'{r} {o}'.format(
h_in=cur_height, h_out=height_out,
to=time_offsets, ho=height_offsets,
hs=this_height_subsample,
fi=cur_num_filters, fo=next_num_filters,
r=('required-time-offsets=0' if allow_zero_padding else ''),
o=misc_conv_opts))
configs.append('component name={0}.conv{1} type=TimeHeightConvolutionComponent '
'{2}'.format(name, n, conv_opts))
configs.append('component-node name={0}.conv{1} component={0}.conv{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_num_filters = next_num_filters
cur_height = height_out
cur_descriptor = '{0}.conv{1}'.format(name, n)
# the batch-norm
configs.append('component name={0}.batchnorm{1} type=BatchNormComponent dim={2} '
'block-dim={3}'.format(
name, n, cur_num_filters * cur_height,
cur_num_filters))
configs.append('component-node name={0}.batchnorm{1} component={0}.batchnorm{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.batchnorm{1}'.format(name, n)
# the scale and offset
configs.append('component name={0}.scaleoffset{1} type=ScaleAndOffsetComponent dim={2} '
'block-dim={3}'.format(
name, n, cur_num_filters * cur_height,
cur_num_filters))
configs.append('component-node name={0}.scaleoffset{1} component={0}.scaleoffset{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.scaleoffset{1}'.format(name, n)
if n == 3:
# the bypass connection
cur_descriptor = 'Sum({0}, {1})'.format(cur_descriptor, bypass_descriptor)
# the ReLU
configs.append('component name={0}.relu{1} type=RectifiedLinearComponent '
'dim={2} block-dim={3} self-repair-scale={4} '
'self-repair-lower-threshold={5}'.format(
name, n, cur_num_filters * cur_height, cur_num_filters,
self.config['self-repair-scale'],
self.config['self-repair-lower-threshold{0}'.format(n)]))
configs.append('component-node name={0}.relu{1} component={0}.relu{1} '
'input={2}'.format(name, n, cur_descriptor))
cur_descriptor = '{0}.relu{1}'.format(name, n)
if bypass_descriptor != input_descriptor:
# We need to add the 1x1 bypass convolution because we're either doing height
# subsampling or changing the number of filters.
conv_opts = ('height-in={hi} height-out={ho} height-offsets=0 '
'time-offsets=0 height-subsample-out={hs} '
'num-filters-in={fi} num-filters-out={fo} {o}'.format(
hi=height_in, ho=height_out, hs=height_subsample,
fi=num_filters_in, fo=num_filters_out, o=misc_conv_opts))
configs.append('component name={0}.conv_bypass type=TimeHeightConvolutionComponent '
'{1}'.format(name, conv_opts))
configs.append('component-node name={0}.conv_bypass component={0}.conv_bypass '
'input={1}'.format(name, input_descriptor))
# Note: the function 'output_name' is responsible for returning the
# descriptor corresponding to the output of the network, which
# in this case will be '{0}.relu3'.format(name).
return configs
# This layer just maps to a single component, a SumBlockComponent. It's for
# doing channel averaging at the end of neural networks. See scripts for
# examples of how to use it.
# An example line using this layer is:
# channel-average-layer name=channel-average input=Append(2, 4, 6, 8) dim=64
# the configuration value 'dim' is the output dimension of this layer.
# The input dimension is expected to be a multiple of 'dim'. The output
# will be the average of 'dim'-sized blocks of the input.
class ChannelAverageLayer(XconfigLayerBase):
def __init__(self, first_token, key_to_value, prev_names = None):
assert first_token == "channel-average-layer"
XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
def set_default_configs(self):
self.config = {'input':'[-1]',
'dim': -1 }
def set_derived_configs(self):
pass
def check_configs(self):
input_dim = self.descriptors['input']['dim']
dim = self.config['dim']
if dim <= 0:
raise RuntimeError("dim must be specified and > 0.")
if input_dim % dim != 0:
raise RuntimeError("input-dim={0} is not a multiple of dim={1}".format(
input_dim, dim))
def auxiliary_outputs(self):
return []
def output_name(self, auxiliary_output = None):
assert auxiliary_output is None
return self.name
def output_dim(self, auxiliary_output = None):
assert auxiliary_output is None
return self.config['dim']
def get_full_config(self):
ans = []
config_lines = self._generate_channel_average_config()
for line in config_lines:
for config_name in ['ref', 'final']:
ans.append((config_name, line))
return ans
def _generate_channel_average_config(self):
configs = []
name = self.name
input_dim = self.descriptors['input']['dim']
input_descriptor = self.descriptors['input']['final-string']
dim = self.config['dim']
# choose the scale that makes it an average rather than a sum.
scale = dim * 1.0 / input_dim
configs.append('component name={0} type=SumBlockComponent input-dim={1} '
'output-dim={2} scale={3}'.format(name, input_dim,
dim, scale))
configs.append('component-node name={0} component={0} input={1}'.format(
name, input_descriptor))
return configs