utils.py
32.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
# Copyright 2016 Johns Hopkins University (Author: Daniel Povey).
# License: Apache 2.0.
# This library contains various utilities that are involved in processing
# of xconfig -> config conversion. It contains "generic" lower-level code
# while xconfig_layers.py contains the code specific to layer types.
from __future__ import print_function
from __future__ import division
import re
import sys
# [utility function used in xconfig_layers.py]
# Given a list of objects of type XconfigLayerBase ('all_layers'),
# including at least the layers preceding 'current_layer' (and maybe
# more layers), return the names of layers preceding 'current_layer'
# other than layers of type 'existing', which corresponds to component-node
# names from an existing model that we are adding layers to them.
# This will be used in parsing expressions like [-1] in descriptors
# (which is an alias for the previous layer).
def get_prev_names(all_layers, current_layer):
prev_names = []
for layer in all_layers:
if layer is current_layer:
break
# The following if-statement is needed to handle the case where the
# the layer is an 'existing' layer, derived from an existing trained
# neural network supplied via the existing-model option, that we are
# adding layers to. In this case, these layers are not considered as
# layers preceding 'current_layer'.
if layer.layer_type is not 'existing':
prev_names.append(layer.get_name())
prev_names_set = set()
for name in prev_names:
if name in prev_names_set:
raise RuntimeError("{0}: Layer name {1} is used more than once.".format(
sys.argv[0], name))
prev_names_set.add(name)
return prev_names
# This is a convenience function to parser the auxiliary output name from the
# full layer name
def split_layer_name(full_layer_name):
assert isinstance(full_layer_name, str)
split_name = full_layer_name.split('.')
if len(split_name) == 0:
raise RuntimeError("Bad layer name: " + full_layer_name)
layer_name = split_name[0]
if len(split_name) == 1:
auxiliary_output = None
else:
# we probably expect len(split_name) == 2 in this case,
# but no harm in allowing dots in the auxiliary_output.
auxiliary_output = '.'.join(split_name[1:])
return [layer_name, auxiliary_output]
# [utility function used in xconfig_layers.py]
# this converts a layer-name like 'ivector' or 'input', or a sub-layer name like
# 'lstm2.memory_cell', into a dimension. 'all_layers' is a vector of objects
# inheriting from XconfigLayerBase. 'current_layer' is provided so that the
# function can make sure not to look in layers that appear *after* this layer
# (because that's not allowed).
def get_dim_from_layer_name(all_layers, current_layer, full_layer_name):
layer_name, auxiliary_output = split_layer_name(full_layer_name)
for layer in all_layers:
if layer is current_layer:
break
# If 'all_layers' contains some 'existing' layers, i.e. layers which
# are not really layers but are actual component names from an existing
# neural net that we are adding components to, they may already be
# of the form 'xxx.yyy', e.g. 'tdnn1.affine'. In this case the name of
# the layer in 'all_layers' won't be just the 'xxx' part (e.g. 'tdnn1'),
# it will be the full thing, like 'tdnn1.affine'.
# We will also use the if-statement immediately below this comment for
# regular layers, e.g. where full_layer_name is something like 'tdnn2'.
# The if-statement below the next one, that uses
# auxiliary_output, will only be used in the (rare) case when we are
# using auxiliary outputs, e.g. 'lstm1.c'.
if layer.get_name() == full_layer_name:
return layer.output_dim()
if layer.get_name() == layer_name:
if (not auxiliary_output in layer.auxiliary_outputs()
and auxiliary_output is not None):
raise RuntimeError("Layer '{0}' has no such auxiliary output:"
"'{1}' ({0}.{1})".format(layer_name,
auxiliary_output))
return layer.output_dim(auxiliary_output)
# No such layer was found.
if layer_name in [ layer.get_name() for layer in all_layers ]:
raise RuntimeError("Layer '{0}' was requested before it appeared in "
"the xconfig file (circular dependencies or out-of-order "
"layers".format(layer_name))
else:
raise RuntimeError("No such layer: '{0}'".format(layer_name))
# [utility function used in xconfig_layers.py]
# this converts a layer-name like 'ivector' or 'input', or a sub-layer name like
# 'lstm2.memory_cell', into a descriptor (usually, but not required to be a simple
# component-node name) that can appear in the generated config file. 'all_layers' is a vector of objects
# inheriting from XconfigLayerBase. 'current_layer' is provided so that the
# function can make sure not to look in layers that appear *after* this layer
# (because that's not allowed).
def get_string_from_layer_name(all_layers, current_layer, full_layer_name):
layer_name, auxiliary_output = split_layer_name(full_layer_name)
for layer in all_layers:
if layer is current_layer:
break
# The following if-statement is needed to handle the case where the
# layer is an 'existing' layer, derived from an existing trained
# neural network supplied via the --existing-model option, that we are
# adding layers to. In this case the name of the layer will actually
# be of the form xxx.yyy, e.g. 'tdnn1.affine'.
# The code path will also be taken for regular (non-'existing') layer
# names where the 'auxiliary_output' field is not used, which is actually
# the normal case (e.g. when 'full_layer_name' is 'lstm1',
# as opposed to, say, 'lstm1.c'
if layer.get_name() == full_layer_name:
return layer.output_name()
if layer.get_name() == layer_name:
if (not auxiliary_output in layer.auxiliary_outputs() and
auxiliary_output is not None):
raise RuntimeError("Layer '{0}' has no such auxiliary output: "
"'{1}' ({0}.{1})".format(
layer_name, auxiliary_output))
return layer.output_name(auxiliary_output)
# No such layer was found.
if layer_name in [ layer.get_name() for layer in all_layers ]:
raise RuntimeError("Layer '{0}' was requested before it appeared in "
"the xconfig file (circular dependencies or out-of-order "
"layers".format(layer_name))
else:
raise RuntimeError("No such layer: '{0}'".format(layer_name))
# This function, used in converting string values in config lines to
# configuration values in self.config in layers, attempts to
# convert 'string_value' to an instance dest_type (which is of type Type)
# 'key' is only needed for printing errors.
def convert_value_to_type(key, dest_type, string_value):
if dest_type == type(bool()):
if string_value == "True" or string_value == "true":
return True
elif string_value == "False" or string_value == "false":
return False
else:
raise RuntimeError("Invalid configuration value {0}={1} (expected bool)".format(
key, string_value))
elif dest_type == type(int()):
try:
return int(string_value)
except:
raise RuntimeError("Invalid configuration value {0}={1} (expected int)".format(
key, string_value))
elif dest_type == type(float()):
try:
return float(string_value)
except:
raise RuntimeError("Invalid configuration value {0}={1} (expected int)".format(
key, string_value))
elif dest_type == type(str()):
return string_value
# This class parses and stores a Descriptor-- expression
# like Append(Offset(input, -3), input) and so on.
# For the full range of possible expressions, see the comment at the
# top of src/nnet3/nnet-descriptor.h.
# Note: as an extension to the descriptor format used in the C++
# code, we can have e.g. input@-3 meaning Offset(input, -3);
# and if bare integer numbers appear where a descriptor was expected,
# they are interpreted as Offset(prev_layer, -3) where 'prev_layer'
# is the previous layer in the config file.
# Also, in any place a raw input/layer/output name can appear, we accept things
# like [-1] meaning the previous input/layer/output's name, or [-2] meaning the
# last-but-one input/layer/output, and so on.
class Descriptor(object):
def __init__(self,
descriptor_string = None,
prev_names = None):
# self.operator is a string that may be 'Offset', 'Append',
# 'Sum', 'Failover', 'IfDefined', 'Offset', 'Switch', 'Round',
# 'ReplaceIndex'; it also may be None, representing the base-case
# (where it's just a layer name)
# self.items will be whatever items are
# inside the parentheses, e.g. if this is Sum(foo bar),
# then items will be [d1, d2], where d1 is a Descriptor for
# 'foo' and d1 is a Descriptor for 'bar'. However, there are
# cases where elements of self.items are strings or integers,
# for instance in an expression 'ReplaceIndex(ivector, x, 0)',
# self.items would be [d, 'x', 0], where d is a Descriptor
# for 'ivector'. In the case where self.operator is None (where
# this Descriptor represents just a bare layer name), self.
# items contains the name of the input layer as a string.
self.operator = None
self.items = None
if descriptor_string != None:
try:
tokens = tokenize_descriptor(descriptor_string, prev_names)
pos = 0
(d, pos) = parse_new_descriptor(tokens, pos, prev_names)
# note: 'pos' should point to the 'end of string' marker
# that terminates 'tokens'.
if pos != len(tokens) - 1:
raise RuntimeError("Parsing Descriptor, saw junk at end: " +
' '.join(tokens[pos:-1]))
# copy members from d.
self.operator = d.operator
self.items = d.items
except RuntimeError as e:
traceback.print_tb(sys.exc_info()[2])
raise RuntimeError("Error parsing Descriptor '{0}', specific error was: {1}".format(
descriptor_string, repr(e)))
# This is like the str() function, but it uses the layer_to_string function
# (which is a function from strings to strings) to convert layer names (or
# in general sub-layer names of the form 'foo.bar') to the component-node
# (or, in general, descriptor) names that appear in the final config file.
# This mechanism gives those designing layer types the freedom to name their
# nodes as they want.
def config_string(self, layer_to_string):
if self.operator is None:
assert len(self.items) == 1 and isinstance(self.items[0], str)
return layer_to_string(self.items[0])
else:
assert isinstance(self.operator, str)
return self.operator + '(' + ', '.join(
[ item.config_string(layer_to_string) if isinstance(item, Descriptor) else str(item)
for item in self.items]) + ')'
def str(self):
if self.operator is None:
assert len(self.items) == 1 and isinstance(self.items[0], str)
return self.items[0]
else:
assert isinstance(self.operator, str)
return self.operator + '(' + ', '.join([str(item) for item in self.items]) + ')'
def __str__(self):
return self.str()
# This function returns the dimension (i.e. the feature dimension) of the
# descriptor. It takes 'layer_to_dim' which is a function from
# layer-names (including sub-layer names, like lstm1.memory_cell) to
# dimensions, e.g. you might have layer_to_dim('ivector') = 100, or
# layer_to_dim('affine1') = 1024.
# note: layer_to_dim will raise an exception if a nonexistent layer or
# sub-layer is requested.
def dim(self, layer_to_dim):
if self.operator is None:
# base-case: self.items = [ layer_name ] (or sub-layer name, like
# 'lstm.memory_cell').
return layer_to_dim(self.items[0])
elif self.operator in [ 'Sum', 'Failover', 'IfDefined', 'Switch' ]:
# these are all operators for which all args are descriptors
# and must have the same dim.
dim = self.items[0].dim(layer_to_dim)
for desc in self.items[1:]:
next_dim = desc.dim(layer_to_dim)
if next_dim != dim:
raise RuntimeError("In descriptor {0}, different fields have different "
"dimensions: {1} != {2}".format(self.str(), dim, next_dim))
return dim
elif self.operator in [ 'Offset', 'Round', 'ReplaceIndex' ]:
# for these operators, only the 1st arg is relevant.
return self.items[0].dim(layer_to_dim)
elif self.operator == 'Append':
return sum([ x.dim(layer_to_dim) for x in self.items])
elif self.operator == 'Scale':
# e.g. Scale(2.0, lstm1). Return dim of 2nd arg.
return self.items[1].dim(layer_to_dim)
elif self.operator == 'Const':
# e.g. Const(0.5, 512). Return 2nd arg, which is an int.
return self.items[1]
else:
raise RuntimeError("Unknown operator {0}".format(self.operator))
# This just checks that seen_item == expected_item, and raises an
# exception if not.
def expect_token(expected_item, seen_item, what_parsing):
if seen_item != expected_item:
raise RuntimeError("parsing {0}, expected '{1}' but got '{2}'".format(
what_parsing, expected_item, seen_item))
# returns true if 'name' is valid as the name of a line (input, layer or output);
# this is the same as IsValidname() in the nnet3 code.
def is_valid_line_name(name):
return isinstance(name, str) and re.match(r'^[a-zA-Z_][-a-zA-Z_0-9.]*', name) != None
# This function for parsing Descriptors takes an array of tokens as produced
# by tokenize_descriptor. It parses a descriptor
# starting from position pos >= 0 of the array 'tokens', and
# returns a new position in the array that reflects any tokens consumed while
# parsing the descriptor.
# It returns a pair (d, pos) where d is the newly parsed Descriptor,
# and 'pos' is the new position after consuming the relevant input.
# 'prev_names' is so that we can find the most recent layer name for
# expressions like Append(-3, 0, 3) which is shorthand for the most recent
# layer spliced at those time offsets.
def parse_new_descriptor(tokens, pos, prev_names):
size = len(tokens)
first_token = tokens[pos]
pos += 1
d = Descriptor()
# when reading this function, be careful to note the indent level,
# there is an if-statement within an if-statement.
if first_token in [ 'Offset', 'Round', 'ReplaceIndex', 'Append', 'Sum',
'Switch', 'Failover', 'IfDefined' ]:
expect_token('(', tokens[pos], first_token + '()')
pos += 1
d.operator = first_token
# the 1st argument of all these operators is a Descriptor.
(desc, pos) = parse_new_descriptor(tokens, pos, prev_names)
d.items = [desc]
if first_token == 'Offset':
expect_token(',', tokens[pos], 'Offset()')
pos += 1
try:
t_offset = int(tokens[pos])
pos += 1
d.items.append(t_offset)
except:
raise RuntimeError("Parsing Offset(), expected integer, got " + tokens[pos])
if tokens[pos] == ')':
return (d, pos + 1)
elif tokens[pos] != ',':
raise RuntimeError("Parsing Offset(), expected ')' or ',', got " + tokens[pos])
pos += 1
try:
x_offset = int(tokens[pos])
pos += 1
d.items.append(x_offset)
except:
raise RuntimeError("Parsing Offset(), expected integer, got " + tokens[pos])
expect_token(')', tokens[pos], 'Offset()')
pos += 1
elif first_token in [ 'Append', 'Sum', 'Switch', 'Failover', 'IfDefined' ]:
while True:
if tokens[pos] == ')':
# check num-items is correct for some special cases.
if first_token == 'Failover' and len(d.items) != 2:
raise RuntimeError("Parsing Failover(), expected 2 items but got {0}".format(len(d.items)))
if first_token == 'IfDefined' and len(d.items) != 1:
raise RuntimeError("Parsing IfDefined(), expected 1 item but got {0}".format(len(d.items)))
pos += 1
break
elif tokens[pos] == ',':
pos += 1 # consume the comma.
else:
raise RuntimeError("Parsing Append(), expected ')' or ',', got " + tokens[pos])
(desc, pos) = parse_new_descriptor(tokens, pos, prev_names)
d.items.append(desc)
elif first_token == 'Round':
expect_token(',', tokens[pos], 'Round()')
pos += 1
try:
t_modulus = int(tokens[pos])
assert t_modulus > 0
pos += 1
d.items.append(t_modulus)
except:
raise RuntimeError("Parsing Offset(), expected integer, got " + tokens[pos])
expect_token(')', tokens[pos], 'Round()')
pos += 1
elif first_token == 'ReplaceIndex':
expect_token(',', tokens[pos], 'ReplaceIndex()')
pos += 1
if tokens[pos] in [ 'x', 't' ]:
d.items.append(tokens[pos])
pos += 1
else:
raise RuntimeError("Parsing ReplaceIndex(), expected 'x' or 't', got " +
tokens[pos])
expect_token(',', tokens[pos], 'ReplaceIndex()')
pos += 1
try:
new_value = int(tokens[pos])
pos += 1
d.items.append(new_value)
except:
raise RuntimeError("Parsing Offset(), expected integer, got " + tokens[pos])
expect_token(')', tokens[pos], 'ReplaceIndex()')
pos += 1
else:
raise RuntimeError("code error")
elif first_token in ['Scale', 'Const' ]:
# Parsing something like 'Scale(2.0, lstm1)' or 'Const(1.0, 512)'
expect_token('(', tokens[pos], first_token + '()')
pos += 1
d.operator = first_token
# First arg of Scale() and Const() is a float: the scale or value,
# respectively.
try:
value = float(tokens[pos])
pos += 1
d.items = [value]
except:
raise RuntimeError("Parsing {0}, expected float, got {1}".format(
first_token, tokens[pos]))
# Consume the comma.
expect_token(',', tokens[pos], first_token + '()')
pos += 1
if first_token == 'Scale':
# Second arg of Scale() is a Descriptor.
(desc, pos) = parse_new_descriptor(tokens, pos, prev_names)
d.items.append(desc)
else:
assert first_token == 'Const'
try:
dim = int(tokens[pos])
pos += 1
d.items.append(dim)
except:
raise RuntimeError("Parsing Const() expression, expected int, got {0}".format(
tokens[pos]))
expect_token(')', tokens[pos], first_token)
pos += 1
elif first_token in [ 'end of string', '(', ')', ',', '@' ]:
raise RuntimeError("Expected descriptor, got " + first_token)
elif is_valid_line_name(first_token) or first_token == '[':
# This section parses a raw input/layer/output name, e.g. "affine2"
# (which must start with an alphabetic character or underscore),
# optionally followed by an offset like '@-3'.
d.operator = None
d.items = [first_token]
# If the layer-name o is followed by '@', then
# we're parsing something like 'affine1@-3' which
# is syntactic sugar for 'Offset(affine1, 3)'.
if tokens[pos] == '@':
pos += 1
try:
offset_t = int(tokens[pos])
pos += 1
except:
raise RuntimeError("Parse error parsing {0}@{1}".format(
first_token, tokens[pos]))
if offset_t != 0:
inner_d = d
d = Descriptor()
# e.g. foo@3 is equivalent to 'Offset(foo, 3)'.
d.operator = 'Offset'
d.items = [ inner_d, offset_t ]
else:
# the last possible case is that 'first_token' is just an integer i,
# which can appear in things like Append(-3, 0, 3).
# See if the token is an integer.
# In this case, it's interpreted as the name of previous layer
# (with that time offset applied).
try:
offset_t = int(first_token)
except:
raise RuntimeError("Parsing descriptor, expected descriptor but got " +
first_token)
assert isinstance(prev_names, list)
if len(prev_names) < 1:
raise RuntimeError("Parsing descriptor, could not interpret '{0}' because "
"there is no previous layer".format(first_token))
d.operator = None
# the layer name is the name of the most recent layer.
d.items = [prev_names[-1]]
if offset_t != 0:
inner_d = d
d = Descriptor()
d.operator = 'Offset'
d.items = [ inner_d, offset_t ]
return (d, pos)
# This function takes a string 'descriptor_string' which might
# look like 'Append([-1], [-2], input)', and a list of previous layer
# names like prev_names = ['foo', 'bar', 'baz'], and replaces
# the integers in brackets with the previous layers. -1 means
# the most recent previous layer ('baz' in this case), -2
# means the last layer but one ('bar' in this case), and so on.
# It will throw an exception if the number is out of range.
# If there are no such expressions in the string, it's OK if
# prev_names == None (this is useful for testing).
def replace_bracket_expressions_in_descriptor(descriptor_string,
prev_names = None):
fields = re.split(r'(\[|\])\s*', descriptor_string)
out_fields = []
i = 0
while i < len(fields):
f = fields[i]
i += 1
if f == ']':
raise RuntimeError("Unmatched ']' in descriptor")
elif f == '[':
if i + 2 >= len(fields):
raise RuntimeError("Error tokenizing string '{0}': '[' found too close "
"to the end of the descriptor.".format(descriptor_string))
assert isinstance(prev_names, list)
try:
offset = int(fields[i])
assert offset < 0 and -offset <= len(prev_names)
i += 2 # consume the int and the ']'.
except:
raise RuntimeError("Error tokenizing string '{0}': expression [{1}] has an "
"invalid or out of range offset.".format(descriptor_string, fields[i]))
this_field = prev_names[offset]
out_fields.append(this_field)
else:
out_fields.append(f)
return ''.join(out_fields)
# tokenizes 'descriptor_string' into the tokens that may be part of Descriptors.
# Note: for convenience in parsing, we add the token 'end-of-string' to this
# list.
# The argument 'prev_names' (for the names of previous layers and input and
# output nodes) is needed to process expressions like [-1] meaning the most
# recent layer, or [-2] meaning the last layer but one.
# The default None for prev_names is only supplied for testing purposes.
# Called with 'Append(-1, 0, 1)' this would return
# [ 'Append', '(', '-1', ',', '0', ',', '1' ')' ].
# for a more complicated example: if you call
# tokenize_descriptor('Append(-1, 0, 1, [-2]@0)', prev_names = ['a', 'b', 'c', 'd'])
# the [-2] would get replaced with prev_names[-2] = 'c', returning:
# [ 'Append', '(', '-1', ',', '0', ',', '1', ',', 'c', '@', '0', ')' ]
def tokenize_descriptor(descriptor_string,
prev_names = None):
# split on '(', ')', ',', '@', and space. Note: the parenthesis () in the
# regexp causes it to output the stuff inside the () as if it were a field,
# which is how the call to re.split() keeps characters like '(' and ')' as
# tokens.
fields = re.split(r'(\(|\)|@|,|\s)\s*',
replace_bracket_expressions_in_descriptor(descriptor_string,
prev_names))
ans = []
for f in fields:
# don't include fields that are space, or are empty.
if re.match(r'^\s*$', f) is None:
ans.append(f)
ans.append('end of string')
return ans
# This function parses a line in a config file, something like
# affine-layer name=affine1 input=Append(-3, 0, 3)
# and returns a pair,
# (first_token, fields), as (string, dict) e.g. in this case
# ('affine-layer', {'name':'affine1', 'input':'Append(-3, 0, 3)"
# Note: spaces are allowed in the field names but = signs are
# disallowed, except when quoted with double quotes,
# which is why it's possible to parse them.
# This function also removes comments (anything after '#').
# As a special case, this function will return None if the line
# is empty after removing spaces.
def parse_config_line(orig_config_line):
# Remove comments.
# note: splitting on '#' will always give at least one field... python
# treats splitting on space as a special case that may give zero fields.
config_line = orig_config_line.split('#')[0]
# Note: this set of allowed characters may have to be expanded in future.
x = re.search('[^a-zA-Z0-9\.\-\(\)@_=,/+:\s"]', config_line)
if x is not None:
bad_char = x.group(0)
if bad_char == "'":
raise RuntimeError("Xconfig line has disallowed character ' (use "
"double quotes for strings containing = signs)")
else:
raise RuntimeError("Xconfig line has disallowed character: {0}"
.format(bad_char))
# Now split on space; later we may splice things back together.
fields=config_line.split()
if len(fields) == 0:
return None # Line was only whitespace after removing comments.
first_token = fields[0]
# if first_token does not look like 'foo-bar' or 'foo-bar2', then die.
if re.match('^[a-z][-a-z0-9]+$', first_token) is None:
raise RuntimeError("Error parsing config line (first field doesn't look right).")
# get rid of the first field which we put in 'first_token'.
fields = fields[1:]
rest_of_line = ' '.join(fields)
# rest of the line can be of the form 'a=1 b=" x=1 y=2 " c=Append( i1, i2)'
positions = [x.start() for x in re.finditer('"', rest_of_line)]
if not len(positions) % 2 == 0:
raise RuntimeError("Double-quotes should occur in pairs")
# Replace all the equals signs inside the "-enclosed strings
# with question marks ('?') [this is just an arbitrary character
# that won't otherwise be present, search above for 'banned'],
# and replace the quotation marks themselves with spaces.
# Then later on we'll convert all the question marks to
# equals signs in the values in the dicts.
num_strings = len(positions) // 2
fields = []
for i in range(num_strings):
start = positions[i * 2]
end = positions[i * 2 + 1]
line_before_start = rest_of_line[:start]
inside_quotes=rest_of_line[start+1:end].replace('=', '?')
line_after_end = rest_of_line[end + 1:]
# the reason why we include the spaces here, is to keep the length of
# rest_of_line the same, and the positions in 'positions' valid.
new_rest_of_line = line_before_start + ' ' + inside_quotes + ' ' + line_after_end
assert len(new_rest_of_line) == len(rest_of_line)
rest_of_line = new_rest_of_line
# suppose rest_of_line is: 'input=Append(foo, bar) foo=bar'
# then after the below we'll get
# fields = ['', 'input', 'Append(foo, bar)', 'foo', 'bar']
ans_dict = dict()
other_fields = re.split(r'\s*([-a-zA-Z0-9_]*)=', rest_of_line)
if not (other_fields[0] == '' and len(other_fields) % 2 == 1):
raise RuntimeError("Could not parse config line.");
fields += other_fields[1:]
num_variables = len(fields) // 2
for i in range(num_variables):
var_name = fields[i * 2]
var_value = fields[i * 2 + 1]
if re.match(r'[a-zA-Z_]', var_name) is None:
raise RuntimeError("Expected variable name '{0}' to start with alphabetic character or _, "
"in config line {1}".format(var_name, orig_config_line))
if var_name in ans_dict:
raise RuntimeError("Config line has multiply defined variable {0}: {1}".format(
var_name, orig_config_line))
# Teplace any '?' characters that we inserted above, with the original
# '=' characters.
# The 'strip()' is to remove initial and final spaces that we might
# have inserted while processing double-quotes above (search above
# for the string 'inside_quotes' to see what is meant by this).
ans_dict[var_name] = var_value.replace('?', '=').strip()
return (first_token, ans_dict)
def test_library():
tokenize_test = lambda x: tokenize_descriptor(x)[:-1] # remove 'end of string'
assert tokenize_test("hi") == ['hi']
assert tokenize_test("hi there") == ['hi', 'there']
assert tokenize_test("hi,there") == ['hi', ',', 'there']
assert tokenize_test("hi@-1,there") == ['hi', '@', '-1', ',', 'there']
assert tokenize_test("hi(there)") == ['hi', '(', 'there', ')']
assert tokenize_descriptor("[-1]@2", ['foo', 'bar'])[:-1] == ['bar', '@', '2' ]
assert tokenize_descriptor("[-2].special@2", ['foo', 'bar'])[:-1] == ['foo.special', '@', '2' ]
assert Descriptor('foo').str() == 'foo'
assert Descriptor('Sum(foo,bar)').str() == 'Sum(foo, bar)'
assert Descriptor('Sum(Offset(foo,1),Offset(foo,0))').str() == 'Sum(Offset(foo, 1), Offset(foo, 0))'
for x in [ 'Append(foo, Sum(bar, Offset(baz, 1)))', 'Failover(foo, Offset(bar, -1))',
'IfDefined(Round(baz, 3))', 'Switch(foo1, Offset(foo2, 2), Offset(foo3, 3))',
'IfDefined(ReplaceIndex(ivector, t, 0))', 'ReplaceIndex(foo, x, 0)' ]:
if not Descriptor(x).str() == x:
print("Error: '{0}' != '{1}'".format(Descriptor(x).str(), x))
prev_names = ['last_but_one_layer', 'prev_layer']
for x, y in [ ('Sum(foo,bar)', 'Sum(foo, bar)'),
('Sum(foo1,bar-3_4)', 'Sum(foo1, bar-3_4)'),
('Append(input@-3, input@0, input@3)',
'Append(Offset(input, -3), input, Offset(input, 3))'),
('Append(-3,0,3)',
'Append(Offset(prev_layer, -3), prev_layer, Offset(prev_layer, 3))'),
('[-1]', 'prev_layer'),
('Scale(2.0,foo)', 'Scale(2.0, foo)'),
('Const(0.5,500)', 'Const(0.5, 500)'),
('[-2]', 'last_but_one_layer'),
('[-2]@3',
'Offset(last_but_one_layer, 3)') ]:
if not Descriptor(x, prev_names).str() == y:
print("Error: '{0}' != '{1}'".format(Descriptor(x).str(), y))
print(parse_config_line('affine-layer input=Append(foo, bar) foo=bar'))
print(parse_config_line('affine-layer x="y z" input=Append(foo, bar) foo=bar opt2="a=1 b=2"'))
print(parse_config_line('affine-layer1 input=Append(foo, bar) foo=bar'))
print(parse_config_line('affine-layer'))
if __name__ == "__main__":
test_library()