align.sh 5.53 KB
#!/bin/bash
# Copyright 2012-2015 Brno University of Technology (author: Karel Vesely)
# Apache 2.0

# Aligns 'data' to sequences of transition-ids using Neural Network based acoustic model.
# Optionally produces alignment in lattice format, this is handy to get word alignment.

# Begin configuration section.
nj=4
cmd=run.pl
stage=0
# Begin configuration.
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
beam=10
retry_beam=40
nnet_forward_opts="--no-softmax=true --prior-scale=1.0"
ivector=            # rx-specifier with i-vectors (ark-with-vectors),
text= # (optional) transcipts we align to,

align_to_lats=false # optionally produce alignment in lattice format
 lats_decode_opts="--acoustic-scale=0.1 --beam=20 --lattice_beam=10"
 lats_graph_scales="--transition-scale=1.0 --self-loop-scale=0.1"

use_gpu="no" # yes|no|optionaly
# End configuration options.

[ $# -gt 0 ] && echo "$0 $@"  # Print the command line for logging

[ -f path.sh ] && . ./path.sh # source the path.
. parse_options.sh || exit 1;

set -euo pipefail

if [ $# != 4 ]; then
   echo "usage: $0 <data-dir> <lang-dir> <src-dir> <align-dir>"
   echo "e.g.:  $0 data/train data/lang exp/tri1 exp/tri1_ali"
   echo "main options (for others, see top of script file)"
   echo "  --config <config-file>                           # config containing options"
   echo "  --nj <nj>                                        # number of parallel jobs"
   echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
   exit 1;
fi

data=$1
lang=$2
srcdir=$3
dir=$4

mkdir -p $dir/log
echo $nj > $dir/num_jobs
sdata=$data/split$nj
[[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;

utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt
cp $lang/phones.txt $dir

cp $srcdir/{tree,final.mdl} $dir || exit 1;

# Select default locations to model files
nnet=$srcdir/final.nnet;
class_frame_counts=$srcdir/ali_train_pdf.counts
feature_transform=$srcdir/final.feature_transform
model=$dir/final.mdl

# Check that files exist
for f in $sdata/1/feats.scp $lang/L.fst $nnet $model $feature_transform $class_frame_counts; do
  [ ! -f $f ] && echo "$0: missing file $f" && exit 1;
done
[ -z "$text" -a ! -f $sdata/1/text ] && echo "$0: missing file $f" && exit 1


# PREPARE FEATURE EXTRACTION PIPELINE
# import config,
online_cmvn_opts=
cmvn_opts=
delta_opts=
D=$srcdir
[ -e $D/online_cmvn_opts ] && online_cmvn_opts=$(cat $D/online_cmvn_opts)
[ -e $D/cmvn_opts ] && cmvn_opts=$(cat $D/cmvn_opts)
[ -e $D/delta_opts ] && delta_opts=$(cat $D/delta_opts)
#
# Create the feature stream,
feats="ark,s,cs:copy-feats scp:$sdata/JOB/feats.scp ark:- |"
# apply-cmvn-online (optional),
[ -n "$online_cmvn_opts" -a ! -f $nndir/global_cmvn_stats.mat ] && echo "$0: Missing $nndir/global_cmvn_stats.mat" && exit 1
[ -n "$online_cmvn_opts" ] && feats="$feats apply-cmvn-online $online_cmvn_opts --spk2utt=ark:$srcdata/spk2utt $nndir/global_cmvn_stats.mat ark:- ark:- |"
# apply-cmvn (optional),
[ -n "$cmvn_opts" -a ! -f $sdata/1/cmvn.scp ] && echo "$0: Missing $sdata/1/cmvn.scp" && exit 1
[ -n "$cmvn_opts" ] && feats="$feats apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp ark:- ark:- |"
# add-deltas (optional),
[ -n "$delta_opts" ] && feats="$feats add-deltas $delta_opts ark:- ark:- |"

# add-ivector (optional),
if [ -e $D/ivector_dim ]; then
  [ -z $ivector ] && echo "Missing --ivector, they were used in training!" && exit 1
  # Get the tool,
  ivector_append_tool=append-vector-to-feats # default,
  [ -e $D/ivector_append_tool ] && ivector_append_tool=$(cat $D/ivector_append_tool)
  # Check dims,
  feats_job_1=$(sed 's:JOB:1:g' <(echo $feats))
  dim_raw=$(feat-to-dim "$feats_job_1" -)
  dim_raw_and_ivec=$(feat-to-dim "$feats_job_1 $ivector_append_tool ark:- '$ivector' ark:- |" -)
  dim_ivec=$((dim_raw_and_ivec - dim_raw))
  [ $dim_ivec != "$(cat $D/ivector_dim)" ] && \
    echo "Error, i-vector dim. mismatch (expected $(cat $D/ivector_dim), got $dim_ivec in '$ivector')" && \
    exit 1
  # Append to feats,
  feats="$feats $ivector_append_tool ark:- '$ivector' ark:- |"
fi

# nnet-forward,
feats="$feats nnet-forward $nnet_forward_opts --feature-transform=$feature_transform --class-frame-counts=$class_frame_counts --use-gpu=$use_gpu $nnet ark:- ark:- |"
#

echo "$0: aligning data '$data' using nnet/model '$srcdir', putting alignments in '$dir'"

# Map oovs in reference transcription,
oov=`cat $lang/oov.int` || exit 1;
[ -z "$text" ] && text=$sdata/JOB/text
tra="ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $text |";
# We could just use align-mapped in the next line, but it's less efficient as it compiles the
# training graphs one by one.
if [ $stage -le 0 ]; then
  $cmd JOB=1:$nj $dir/log/align.JOB.log \
    compile-train-graphs --read-disambig-syms=$lang/phones/disambig.int $dir/tree $dir/final.mdl $lang/L.fst "$tra" ark:- \| \
    align-compiled-mapped $scale_opts --beam=$beam --retry-beam=$retry_beam $dir/final.mdl ark:- \
      "$feats" "ark,t:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi

# Optionally align to lattice format (handy to get word alignment)
if [ "$align_to_lats" == "true" ]; then
  echo "$0: aligning also to lattices '$dir/lat.*.gz'"
  $cmd JOB=1:$nj $dir/log/align_lat.JOB.log \
    compile-train-graphs --read-disambig-syms=$lang/phones/disambig.int $lats_graph_scales $dir/tree $dir/final.mdl  $lang/L.fst "$tra" ark:- \| \
    latgen-faster-mapped $lats_decode_opts --word-symbol-table=$lang/words.txt $dir/final.mdl ark:- \
      "$feats" "ark:|gzip -c >$dir/lat.JOB.gz" || exit 1;
fi

echo "$0: done aligning data."