pretrain_dbn.sh
14.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#!/bin/bash
# Copyright 2013-2015 Brno University of Technology (author: Karel Vesely)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
# WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
# MERCHANTABLITY OR NON-INFRINGEMENT.
# See the Apache 2 License for the specific language governing permissions and
# limitations under the License.
# To be run from ../../
#
# Restricted Boltzman Machine (RBM) pre-training by Contrastive Divergence
# algorithm (CD-1). A stack of RBMs forms a Deep Belief Neetwork (DBN).
#
# This script by default pre-trains on plain features (ie. saved fMLLR features),
# building a 'feature_transform' containing +/-5 frame splice and global CMVN.
#
# There is also a support for adding speaker-based CMVN, deltas, i-vectors,
# or passing custom 'feature_transform' or its prototype.
#
# Begin configuration.
# topology, initialization,
nn_depth=6 # number of hidden layers,
hid_dim=2048 # number of neurons per layer,
param_stddev_first=0.1 # init parameters in 1st RBM
param_stddev=0.1 # init parameters in other RBMs
input_vis_type=gauss # type of visible nodes on DBN input
# number of iterations,
rbm_iter=1 # number of pre-training epochs (Gaussian-Bernoulli RBM has 2x more)
# pre-training opts,
rbm_lrate=0.4 # RBM learning rate
rbm_lrate_low=0.01 # lower RBM learning rate (for Gaussian units)
rbm_l2penalty=0.0002 # L2 penalty (increases RBM-mixing rate)
rbm_extra_opts=
# data processing,
copy_feats=true # resave the features to tmpdir,
copy_feats_tmproot=/tmp/kaldi.XXXX # sets tmproot for 'copy-feats',
copy_feats_compress=true # compress feats while resaving
# feature processing,
splice=5 # (default) splice features both-ways along time axis,
cmvn_opts= # (optional) adds 'apply-cmvn' to input feature pipeline, see opts,
delta_opts= # (optional) adds 'add-deltas' to input feature pipeline, see opts,
ivector= # (optional) adds 'append-vector-to-feats', the option is rx-filename for the 2nd stream,
ivector_append_tool=append-vector-to-feats # (optional) the tool for appending ivectors,
feature_transform_proto= # (optional) use this prototype for 'feature_transform',
feature_transform= # (optional) directly use this 'feature_transform',
# misc.
verbose=1 # enable per-cache reports
skip_cuda_check=false
# End configuration.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh;
. parse_options.sh || exit 1;
set -euo pipefail
if [ $# != 2 ]; then
echo "Usage: $0 <data> <exp-dir>"
echo " e.g.: $0 data/train exp/rbm_pretrain"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo ""
echo " --nn-depth <N> # number of RBM layers"
echo " --hid-dim <N> # number of hidden units per layer"
echo " --rbm-iter <N> # number of CD-1 iterations per layer"
echo " # can be used to subsample large datasets"
echo " --rbm-lrate <float> # learning-rate for Bernoulli-Bernoulli RBMs"
echo " --rbm-lrate-low <float> # learning-rate for Gaussian-Bernoulli RBM"
echo ""
echo " --cmvn-opts <string> # add 'apply-cmvn' to input feature pipeline"
echo " --delta-opts <string> # add 'add-deltas' to input feature pipeline"
echo " --splice <N> # splice +/-N frames of input features"
echo " --copy-feats <bool> # copy features to /tmp, lowers storage stress"
echo ""
echo " --feature_transform_proto <file> # use this prototype for 'feature_transform'"
echo " --feature-transform <file> # directly use this 'feature_transform'"
exit 1;
fi
data=$1
dir=$2
for f in $data/feats.scp; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
echo "# INFO"
echo "$0 : Pre-training Deep Belief Network as a stack of RBMs"
printf "\t dir : $dir \n"
printf "\t Train-set : $data '$(cat $data/feats.scp | wc -l)'\n"
echo
[ -e $dir/${nn_depth}.dbn ] && echo "$0 Skipping, already have $dir/${nn_depth}.dbn" && exit 0
# check if CUDA compiled in and GPU is available,
if ! $skip_cuda_check; then cuda-gpu-available || exit 1; fi
mkdir -p $dir/log
###### PREPARE FEATURES ######
echo
echo "# PREPARING FEATURES"
if [ "$copy_feats" == "true" ]; then
# re-save the features to local disk into /tmp/,
tmpdir=$(mktemp -d $copy_feats_tmproot)
trap "echo \"# Removing features tmpdir $tmpdir @ $(hostname)\"; ls $tmpdir; rm -r $tmpdir" INT QUIT TERM EXIT
copy-feats --compress=$copy_feats_compress scp:$data/feats.scp ark,scp:$tmpdir/train.ark,$dir/train_sorted.scp || exit 1
else
# or copy the list,
cp $data/feats.scp $dir/train_sorted.scp
fi
# shuffle the list,
utils/shuffle_list.pl --srand 777 <$dir/train_sorted.scp >$dir/train.scp
# create a 10k utt subset for global cmvn estimates,
head -n 10000 $dir/train.scp > $dir/train.scp.10k
# for debugging, add list with non-local features,
utils/shuffle_list.pl --srand 777 <$data/feats.scp >$dir/train.scp_non_local
###### OPTIONALLY IMPORT FEATURE SETTINGS ######
ivector_dim= # no ivectors,
if [ ! -z $feature_transform ]; then
D=$(dirname $feature_transform)
echo "# importing feature settings from dir '$D'"
[ -e $D/cmvn_opts ] && cmvn_opts=$(cat $D/cmvn_opts)
[ -e $D/delta_opts ] && delta_opts=$(cat $D/delta_opts)
[ -e $D/ivector_dim ] && ivector_dim=$(cat $D/ivector_dim)
[ -e $D/ivector_append_tool ] && ivector_append_tool=$(cat $D/ivector_append_tool)
echo "# cmvn_opts='$cmvn_opts' delta_opts='$delta_opts' ivector_dim='$ivector_dim'"
fi
###### PREPARE FEATURE PIPELINE ######
# read the features
feats_tr="ark:copy-feats scp:$dir/train.scp ark:- |"
# optionally add per-speaker CMVN
if [ ! -z "$cmvn_opts" ]; then
echo "+ 'apply-cmvn' with '$cmvn_opts' using statistics : $data/cmvn.scp"
[ ! -r $data/cmvn.scp ] && echo "Missing $data/cmvn.scp" && exit 1;
[ ! -r $data/utt2spk ] && echo "Missing $data/utt2spk" && exit 1;
feats_tr="$feats_tr apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp ark:- ark:- |"
else
echo "# 'apply-cmvn' not used,"
fi
# optionally add deltas
if [ ! -z "$delta_opts" ]; then
feats_tr="$feats_tr add-deltas $delta_opts ark:- ark:- |"
echo "# + 'add-deltas' with '$delta_opts'"
fi
# keep track of the config,
[ ! -z "$cmvn_opts" ] && echo "$cmvn_opts" >$dir/cmvn_opts
[ ! -z "$delta_opts" ] && echo "$delta_opts" >$dir/delta_opts
#
# get feature dim,
feat_dim=$(feat-to-dim "$feats_tr" -)
echo "# feature dim : $feat_dim (input of 'feature_transform')"
# Now we start building 'feature_transform' which goes right in front of a NN.
# The forwarding is computed on a GPU before the frame shuffling is applied.
#
# Same GPU is used both for 'feature_transform' and the NN training.
# So it has to be done by a single process (we are using exclusive mode).
# This also reduces the CPU-GPU uploads/downloads to minimum.
if [ ! -z "$feature_transform" ]; then
echo "# importing 'feature_transform' from '$feature_transform'"
tmp=$dir/imported_$(basename $feature_transform)
cp $feature_transform $tmp; feature_transform=$tmp
else
# Make default proto with splice,
if [ ! -z $feature_transform_proto ]; then
echo "# importing custom 'feature_transform_proto' from : $feature_transform_proto"
else
echo "+ default 'feature_transform_proto' with splice +/-$splice frames"
feature_transform_proto=$dir/splice${splice}.proto
echo "<Splice> <InputDim> $feat_dim <OutputDim> $(((2*splice+1)*feat_dim)) <BuildVector> -$splice:$splice </BuildVector>" >$feature_transform_proto
fi
# Initialize 'feature-transform' from a prototype,
feature_transform=$dir/tr_$(basename $feature_transform_proto .proto).nnet
nnet-initialize --binary=false $feature_transform_proto $feature_transform
# Renormalize the MLP input to zero mean and unit variance,
feature_transform_old=$feature_transform
feature_transform=${feature_transform%.nnet}_cmvn-g.nnet
echo "# compute normalization stats from 10k sentences"
nnet-forward --print-args=true --use-gpu=yes $feature_transform_old \
"$(echo $feats_tr | sed 's|train.scp|train.scp.10k|')" ark:- |\
compute-cmvn-stats ark:- $dir/cmvn-g.stats
echo "# + normalization of NN-input at '$feature_transform'"
nnet-concat --print-args=false --binary=false $feature_transform_old \
"cmvn-to-nnet $dir/cmvn-g.stats -|" $feature_transform
fi
if [ ! -z $ivector ]; then
echo
echo "# ADDING IVECTOR FEATURES"
# The iVectors are concatenated 'as they are' directly to the input of the neural network,
# To do this, we paste the features, and use <ParallelComponent> where the 1st component
# contains the transform and 2nd network contains <Copy> component.
echo "# getting dims,"
dim_raw=$(feat-to-dim "$feats_tr" -)
dim_raw_and_ivec=$(feat-to-dim "$feats_tr $ivector_append_tool ark:- '$ivector' ark:- |" -)
dim_ivec=$((dim_raw_and_ivec - dim_raw))
echo "# dims, feats-raw $dim_raw, ivectors $dim_ivec,"
# Should we do something with 'feature_transform'?
if [ ! -z $ivector_dim ]; then
# No, the 'ivector_dim' comes from dir with 'feature_transform' with iVec forwarding,
echo "# assuming we got '$feature_transform' with ivector forwarding,"
[ $ivector_dim != $dim_ivec ] && \
echo -n "Error, i-vector dimensionality mismatch!" && \
echo " (expected $ivector_dim, got $dim_ivec in $ivector)" && exit 1
else
# Yes, adjust the transform to do ``iVec forwarding'',
feature_transform_old=$feature_transform
feature_transform=${feature_transform%.nnet}_ivec_copy.nnet
echo "# setting up ivector forwarding into '$feature_transform',"
dim_transformed=$(feat-to-dim "$feats_tr nnet-forward $feature_transform_old ark:- ark:- |" -)
nnet-initialize --print-args=false <(echo "<Copy> <InputDim> $dim_ivec <OutputDim> $dim_ivec <BuildVector> 1:$dim_ivec </BuildVector>") $dir/tr_ivec_copy.nnet
nnet-initialize --print-args=false <(echo "<ParallelComponent> <InputDim> $((dim_raw+dim_ivec)) <OutputDim> $((dim_transformed+dim_ivec)) <NestedNnetFilename> $feature_transform_old $dir/tr_ivec_copy.nnet </NestedNnetFilename>") $feature_transform
fi
echo $dim_ivec >$dir/ivector_dim # mark down the iVec dim!
echo $ivector_append_tool >$dir/ivector_append_tool
# pasting the iVecs to the feaures,
echo "# + ivector input '$ivector'"
feats_tr="$feats_tr $ivector_append_tool ark:- '$ivector' ark:- |"
fi
###### Show the final 'feature_transform' in the log,
echo
echo "### Showing the final 'feature_transform':"
nnet-info $feature_transform
echo "###"
###### MAKE LINK TO THE FINAL feature_transform, so the other scripts will find it ######
[ -f $dir/final.feature_transform ] && unlink $dir/final.feature_transform
(cd $dir; ln -s $(basename $feature_transform) final.feature_transform )
feature_transform=$dir/final.feature_transform
###### GET THE DIMENSIONS ######
num_fea=$(feat-to-dim --print-args=false "$feats_tr nnet-forward --use-gpu=no $feature_transform ark:- ark:- |" - 2>/dev/null)
num_hid=$hid_dim
###### PERFORM THE PRE-TRAINING ######
for depth in $(seq 1 $nn_depth); do
echo
echo "# PRE-TRAINING RBM LAYER $depth"
RBM=$dir/$depth.rbm
[ -f $RBM ] && echo "RBM '$RBM' already trained, skipping." && continue
# The first RBM needs special treatment, because of Gussian input nodes,
if [ "$depth" == "1" ]; then
# This is usually Gaussian-Bernoulli RBM (not if CNN layers are part of input transform)
# initialize,
echo "# initializing '$RBM.init'"
echo "<Rbm> <InputDim> $num_fea <OutputDim> $num_hid <VisibleType> $input_vis_type <HiddenType> bern <ParamStddev> $param_stddev_first" > $RBM.proto
nnet-initialize $RBM.proto $RBM.init 2>$dir/log/nnet-initialize.$depth.log || exit 1
# pre-train,
num_iter=$rbm_iter; [ $input_vis_type == "gauss" ] && num_iter=$((2*rbm_iter)) # 2x more epochs for Gaussian input
[ $input_vis_type == "bern" ] && rbm_lrate_low=$rbm_lrate # original lrate for Bernoulli input
echo "# pretraining '$RBM' (input $input_vis_type, lrate $rbm_lrate_low, iters $num_iter)"
rbm-train-cd1-frmshuff --learn-rate=$rbm_lrate_low --l2-penalty=$rbm_l2penalty \
--num-iters=$num_iter --verbose=$verbose \
--feature-transform=$feature_transform \
$rbm_extra_opts \
$RBM.init "$feats_tr" $RBM 2>$dir/log/rbm.$depth.log || exit 1
else
# This is Bernoulli-Bernoulli RBM,
# cmvn stats for init,
echo "# computing cmvn stats '$dir/$depth.cmvn' for RBM initialization"
if [ ! -f $dir/$depth.cmvn ]; then
nnet-forward --print-args=false --use-gpu=yes \
"nnet-concat $feature_transform $dir/$((depth-1)).dbn - |" \
"$(echo $feats_tr | sed 's|train.scp|train.scp.10k|')" ark:- | \
compute-cmvn-stats --print-args=false ark:- - | \
cmvn-to-nnet --print-args=false - $dir/$depth.cmvn || exit 1
else
echo "# compute-cmvn-stats already done, skipping."
fi
# initialize,
echo "initializing '$RBM.init'"
echo "<Rbm> <InputDim> $num_hid <OutputDim> $num_hid <VisibleType> bern <HiddenType> bern <ParamStddev> $param_stddev <VisibleBiasCmvnFilename> $dir/$depth.cmvn" > $RBM.proto
nnet-initialize $RBM.proto $RBM.init 2>$dir/log/nnet-initialize.$depth.log || exit 1
# pre-train,
echo "pretraining '$RBM' (lrate $rbm_lrate, iters $rbm_iter)"
rbm-train-cd1-frmshuff --learn-rate=$rbm_lrate --l2-penalty=$rbm_l2penalty \
--num-iters=$rbm_iter --verbose=$verbose \
--feature-transform="nnet-concat $feature_transform $dir/$((depth-1)).dbn - |" \
$rbm_extra_opts \
$RBM.init "$feats_tr" $RBM 2>$dir/log/rbm.$depth.log || exit 1
fi
# Create DBN stack,
if [ "$depth" == "1" ]; then
echo "# converting RBM to $dir/$depth.dbn"
rbm-convert-to-nnet $RBM $dir/$depth.dbn
else
echo "# appending RBM to $dir/$depth.dbn"
nnet-concat $dir/$((depth-1)).dbn "rbm-convert-to-nnet $RBM - |" $dir/$depth.dbn
fi
done
echo
echo "# REPORT"
echo "# RBM pre-training progress (line per-layer)"
grep progress $dir/log/rbm.*.log
echo
echo "Pre-training finished."
sleep 3
exit 0