train.sh
19.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#!/bin/bash
# Copyright 2012-2017 Brno University of Technology (author: Karel Vesely)
# Apache 2.0
# Begin configuration.
config= # config, also forwarded to 'train_scheduler.sh',
# topology, initialization,
network_type=dnn # select type of neural network (dnn,cnn1d,cnn2d,lstm),
hid_layers=4 # nr. of hidden layers (before sotfmax or bottleneck),
hid_dim=1024 # number of neurons per layer,
bn_dim= # (optional) adds bottleneck and one more hidden layer to the NN,
dbn= # (optional) prepend layers to the initialized NN,
proto_opts= # adds options to 'make_nnet_proto.py',
cnn_proto_opts= # adds options to 'make_cnn_proto.py',
nnet_init= # (optional) use this pre-initialized NN,
nnet_proto= # (optional) use this NN prototype for initialization,
# feature processing,
splice=5 # (default) splice features both-ways along time axis,
online_cmvn_opts= # (optional) adds 'apply-cmvn-online' to input feature pipeline, see opts,
cmvn_opts= # (optional) adds 'apply-cmvn' to input feature pipeline, see opts,
delta_opts= # (optional) adds 'add-deltas' to input feature pipeline, see opts,
ivector= # (optional) adds 'append-vector-to-feats', the option is rx-filename for the 2nd stream,
ivector_append_tool=append-vector-to-feats # (optional) the tool for appending ivectors,
feat_type=plain
traps_dct_basis=11 # (feat_type=traps) nr. of DCT basis, 11 is good with splice=10,
transf= # (feat_type=transf) import this linear tranform,
splice_after_transf=5 # (feat_type=transf) splice after the linear transform,
feature_transform_proto= # (optional) use this prototype for 'feature_transform',
feature_transform= # (optional) directly use this 'feature_transform',
# labels,
labels= # (optional) specify non-default training targets,
# (targets need to be in posterior format, see 'ali-to-post', 'feat-to-post'),
num_tgt= # (optional) specifiy number of NN outputs, to be used with 'labels=',
# training scheduler,
learn_rate=0.008 # initial learning rate,
scheduler_opts= # options, passed to the training scheduler,
train_tool= # optionally change the training tool,
train_tool_opts= # options for the training tool,
frame_weights= # per-frame weights for gradient weighting,
utt_weights= # per-utterance weights (scalar for --frame-weights),
# data processing, misc.
copy_feats=true # resave the train/cv features into /tmp (disabled by default),
copy_feats_tmproot=/tmp/kaldi.XXXX # sets tmproot for 'copy-feats',
copy_feats_compress=true # compress feats while resaving
feats_std=1.0
split_feats= # split the training data into N portions, one portion will be one 'epoch',
# (empty = no splitting)
seed=777 # seed value used for data-shuffling, nn-initialization, and training,
skip_cuda_check=false
skip_phoneset_check=false
# End configuration.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh;
. parse_options.sh || exit 1;
set -euo pipefail
if [ $# != 6 ]; then
echo "Usage: $0 <data-train> <data-dev> <lang-dir> <ali-train> <ali-dev> <exp-dir>"
echo " e.g.: $0 data/train data/cv data/lang exp/mono_ali_train exp/mono_ali_cv exp/mono_nnet"
echo ""
echo " Training data : <data-train>,<ali-train> (for optimizing cross-entropy)"
echo " Held-out data : <data-dev>,<ali-dev> (for learn-rate scheduling, model selection)"
echo " note.: <ali-train>,<ali-dev> can point to same directory, or 2 separate directories."
echo ""
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo ""
echo " --network-type (dnn,cnn1d,cnn2d,lstm) # type of neural network"
echo " --nnet-proto <file> # use this NN prototype"
echo " --feature-transform <file> # re-use this input feature transform"
echo ""
echo " --feat-type (plain|traps|transf) # type of input features"
echo " --cmvn-opts <string> # add 'apply-cmvn' to input feature pipeline"
echo " --delta-opts <string> # add 'add-deltas' to input feature pipeline"
echo " --splice <N> # splice +/-N frames of input features"
echo
echo " --learn-rate <float> # initial leaning-rate"
echo " --copy-feats <bool> # copy features to /tmp, lowers storage stress"
echo ""
exit 1;
fi
data=$1
data_cv=$2
lang=$3
alidir=$4
alidir_cv=$5
dir=$6
# Using alidir for supervision (default)
if [ -z "$labels" ]; then
silphonelist=`cat $lang/phones/silence.csl`
for f in $alidir/final.mdl $alidir/ali.1.gz $alidir_cv/ali.1.gz; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
fi
for f in $data/feats.scp $data_cv/feats.scp; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
echo
echo "# INFO"
echo "$0 : Training Neural Network"
printf "\t dir : $dir \n"
printf "\t Train-set : $data $(cat $data/feats.scp | wc -l), $alidir \n"
printf "\t CV-set : $data_cv $(cat $data_cv/feats.scp | wc -l) $alidir_cv \n"
echo
mkdir -p $dir/{log,nnet}
if ! $skip_phoneset_check; then
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir_cv/phones.txt
cp $lang/phones.txt $dir
fi
# skip when already trained,
if [ -e $dir/final.nnet ]; then
echo "SKIPPING TRAINING... ($0)"
echo "nnet already trained : $dir/final.nnet ($(readlink $dir/final.nnet))"
exit 0
fi
# check if CUDA compiled in and GPU is available,
if ! $skip_cuda_check; then cuda-gpu-available || exit 1; fi
###### PREPARE ALIGNMENTS ######
echo
echo "# PREPARING ALIGNMENTS"
if [ ! -z "$labels" ]; then
echo "Using targets '$labels' (by force)"
labels_tr="$labels"
labels_cv="$labels"
else
echo "Using PDF targets from dirs '$alidir' '$alidir_cv'"
# training targets in posterior format,
labels_tr="ark:ali-to-pdf $alidir/final.mdl \"ark:gunzip -c $alidir/ali.*.gz |\" ark:- | ali-to-post ark:- ark:- |"
labels_cv="ark:ali-to-pdf $alidir/final.mdl \"ark:gunzip -c $alidir_cv/ali.*.gz |\" ark:- | ali-to-post ark:- ark:- |"
# training targets for analyze-counts,
labels_tr_pdf="ark:ali-to-pdf $alidir/final.mdl \"ark:gunzip -c $alidir/ali.*.gz |\" ark:- |"
labels_tr_phn="ark:ali-to-phones --per-frame=true $alidir/final.mdl \"ark:gunzip -c $alidir/ali.*.gz |\" ark:- |"
# get pdf-counts, used later for decoding/aligning,
num_pdf=$(hmm-info $alidir/final.mdl | awk '/pdfs/{print $4}')
analyze-counts --verbose=1 --binary=false --counts-dim=$num_pdf \
${frame_weights:+ "--frame-weights=$frame_weights"} \
${utt_weights:+ "--utt-weights=$utt_weights"} \
"$labels_tr_pdf" $dir/ali_train_pdf.counts 2>$dir/log/analyze_counts_pdf.log
# copy the old transition model, will be needed by decoder,
copy-transition-model --binary=false $alidir/final.mdl $dir/final.mdl
# copy the tree
cp $alidir/tree $dir/tree
# make phone counts for analysis,
[ -e $lang/phones.txt ] && analyze-counts --verbose=1 --symbol-table=$lang/phones.txt --counts-dim=$num_pdf \
${frame_weights:+ "--frame-weights=$frame_weights"} \
${utt_weights:+ "--utt-weights=$utt_weights"} \
"$labels_tr_phn" /dev/null 2>$dir/log/analyze_counts_phones.log
fi
###### PREPARE FEATURES ######
echo
echo "# PREPARING FEATURES"
if [ "$copy_feats" == "true" ]; then
echo "# re-saving features to local disk,"
tmpdir=$(mktemp -d $copy_feats_tmproot)
copy-feats --compress=$copy_feats_compress scp:$data/feats.scp ark,scp:$tmpdir/train.ark,$dir/train_sorted.scp
copy-feats --compress=$copy_feats_compress scp:$data_cv/feats.scp ark,scp:$tmpdir/cv.ark,$dir/cv.scp
trap "echo '# Removing features tmpdir $tmpdir @ $(hostname)'; ls $tmpdir; rm -r $tmpdir" EXIT
else
# or copy the list,
cp $data/feats.scp $dir/train_sorted.scp
cp $data_cv/feats.scp $dir/cv.scp
fi
# shuffle the list,
utils/shuffle_list.pl --srand ${seed:-777} <$dir/train_sorted.scp >$dir/train.scp
# create a 10k utt subset for global cmvn estimates,
head -n 10000 $dir/train.scp > $dir/train.scp.10k
# split the list,
if [ -n "$split_feats" ]; then
scps= # 1..split_feats,
for (( ii=1; ii<=$split_feats; ii++ )); do scps="$scps $dir/train.${ii}.scp"; done
utils/split_scp.pl $dir/train.scp $scps
fi
# for debugging, add lists with non-local features,
utils/shuffle_list.pl --srand ${seed:-777} <$data/feats.scp >$dir/train.scp_non_local
cp $data_cv/feats.scp $dir/cv.scp_non_local
###### OPTIONALLY IMPORT FEATURE SETTINGS (from pre-training) ######
ivector_dim= # no ivectors,
if [ -n "$feature_transform" ]; then
D=$(dirname $feature_transform)
echo "# importing feature settings from dir '$D'"
[ -e $D/online_cmvn_opts ] && online_cmvn_opts=$(cat $D/online_cmvn_opts)
[ -e $D/cmvn_opts ] && cmvn_opts=$(cat $D/cmvn_opts)
[ -e $D/delta_opts ] && delta_opts=$(cat $D/delta_opts)
[ -e $D/ivector_dim ] && ivector_dim=$(cat $D/ivector_dim)
[ -e $D/ivector_append_tool ] && ivector_append_tool=$(cat $D/ivector_append_tool)
echo "# cmvn_opts='$cmvn_opts' delta_opts='$delta_opts' ivector_dim='$ivector_dim'"
fi
###### PREPARE FEATURE PIPELINE ######
# read the features,
feats_tr="ark:copy-feats scp:$dir/train.scp ark:- |"
feats_cv="ark:copy-feats scp:$dir/cv.scp ark:- |"
# optionally add per-speaker CMVN,
[ -n "$online_cmvn_opts" -a -n "$cmvn_opts" ] && echo "Error: use \$online_cmvn_opts or \$cmvn_opts, not both!" && exit 1
if [ -n "$online_cmvn_opts" ]; then
echo "# + 'apply-cmvn-online' with '$online_cmvn_opts' is used,"
global_cmvn_stats=$dir/global_cmvn_stats.mat
matrix-sum --binary=false scp:$data/cmvn.scp $global_cmvn_stats
feats_tr="$feats_tr apply-cmvn-online $online_cmvn_opts $global_cmvn_stats ark:- ark:- |"
feats_cv="$feats_cv apply-cmvn-online $online_cmvn_opts $global_cmvn_stats ark:- ark:- |"
elif [ -n "$cmvn_opts" ]; then
echo "# + 'apply-cmvn' with '$cmvn_opts' using statistics : $data/cmvn.scp, $data_cv/cmvn.scp"
[ ! -r $data/cmvn.scp ] && echo "Missing $data/cmvn.scp" && exit 1;
[ ! -r $data_cv/cmvn.scp ] && echo "Missing $data_cv/cmvn.scp" && exit 1;
feats_tr="$feats_tr apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp ark:- ark:- |"
feats_cv="$feats_cv apply-cmvn $cmvn_opts --utt2spk=ark:$data_cv/utt2spk scp:$data_cv/cmvn.scp ark:- ark:- |"
else
echo "# 'apply-cmvn' is not used,"
fi
# optionally add deltas,
if [ ! -z "$delta_opts" ]; then
feats_tr="$feats_tr add-deltas $delta_opts ark:- ark:- |"
feats_cv="$feats_cv add-deltas $delta_opts ark:- ark:- |"
echo "# + 'add-deltas' with '$delta_opts'"
fi
# keep track of the config,
[ -n "$online_cmvn_opts" ] && echo "$online_cmvn_opts" >$dir/online_cmvn_opts
[ -n "$cmvn_opts" ] && echo "$cmvn_opts" >$dir/cmvn_opts
[ -n "$delta_opts" ] && echo "$delta_opts" >$dir/delta_opts
#
# temoprary pipeline with first 10k,
feats_tr_10k="${feats_tr/train.scp/train.scp.10k}"
# get feature dim,
feat_dim=$(feat-to-dim "$feats_tr_10k" -)
echo "# feature dim : $feat_dim (input of 'feature_transform')"
# Now we start building 'feature_transform' which goes right in front of a NN.
# The forwarding is computed on a GPU before the frame shuffling is applied.
#
# Same GPU is used both for 'feature_transform' and the NN training.
# So it has to be done by a single process (we are using exclusive mode).
# This also reduces the CPU-GPU uploads/downloads to minimum.
if [ -n "$feature_transform" ]; then
echo "# importing 'feature_transform' from '$feature_transform'"
tmp=$dir/imported_$(basename $feature_transform)
cp $feature_transform $tmp; feature_transform=$tmp
else
# Make default proto with splice,
if [ -n "$feature_transform_proto" ]; then
echo "# importing custom 'feature_transform_proto' from '$feature_transform_proto'"
else
echo "# + default 'feature_transform_proto' with splice +/-$splice frames,"
feature_transform_proto=$dir/splice${splice}.proto
echo "<Splice> <InputDim> $feat_dim <OutputDim> $(((2*splice+1)*feat_dim)) <BuildVector> -$splice:$splice </BuildVector>" >$feature_transform_proto
fi
# Initialize 'feature-transform' from a prototype,
feature_transform=$dir/tr_$(basename $feature_transform_proto .proto).nnet
nnet-initialize --binary=false $feature_transform_proto $feature_transform
# Choose further processing of spliced features
echo "# feature type : $feat_type"
case $feat_type in
plain)
;;
traps)
#generate hamming+dct transform
feature_transform_old=$feature_transform
feature_transform=${feature_transform%.nnet}_hamm_dct${traps_dct_basis}.nnet
echo "# + Hamming DCT transform (t$((splice*2+1)),dct${traps_dct_basis}) into '$feature_transform'"
#prepare matrices with time-transposed hamming and dct
utils/nnet/gen_hamm_mat.py --fea-dim=$feat_dim --splice=$splice > $dir/hamm.mat
utils/nnet/gen_dct_mat.py --fea-dim=$feat_dim --splice=$splice --dct-basis=$traps_dct_basis > $dir/dct.mat
#put everything together
compose-transforms --binary=false $dir/dct.mat $dir/hamm.mat - | \
transf-to-nnet - - | \
nnet-concat --binary=false $feature_transform_old - $feature_transform
;;
transf)
feature_transform_old=$feature_transform
feature_transform=${feature_transform%.nnet}_transf_splice${splice_after_transf}.nnet
[ -z $transf ] && transf=$alidir/final.mat
[ ! -f $transf ] && echo "Missing transf $transf" && exit 1
feat_dim=$(feat-to-dim "$feats_tr_10k nnet-forward 'nnet-concat $feature_transform_old \"transf-to-nnet $transf - |\" - |' ark:- ark:- |" -)
nnet-concat --binary=false $feature_transform_old \
"transf-to-nnet $transf - |" \
"utils/nnet/gen_splice.py --fea-dim=$feat_dim --splice=$splice_after_transf |" \
$feature_transform
;;
*)
echo "Unknown feature type $feat_type"
exit 1;
;;
esac
# keep track of feat_type,
echo $feat_type > $dir/feat_type
# Renormalize the MLP input to zero mean and unit variance,
feature_transform_old=$feature_transform
feature_transform=${feature_transform%.nnet}_cmvn-g.nnet
echo "# compute normalization stats from 10k sentences"
nnet-forward --print-args=true --use-gpu=yes $feature_transform_old \
"$feats_tr_10k" ark:- |\
compute-cmvn-stats ark:- $dir/cmvn-g.stats
echo "# + normalization of NN-input at '$feature_transform'"
nnet-concat --binary=false $feature_transform_old \
"cmvn-to-nnet --std-dev=$feats_std $dir/cmvn-g.stats -|" $feature_transform
fi
if [ ! -z $ivector ]; then
echo
echo "# ADDING IVECTOR FEATURES"
# The iVectors are concatenated 'as they are' directly to the input of the neural network,
# To do this, we paste the features, and use <ParallelComponent> where the 1st component
# contains the transform and 2nd network contains <Copy> component.
echo "# getting dims,"
dim_raw=$(feat-to-dim "$feats_tr_10k" -)
dim_raw_and_ivec=$(feat-to-dim "$feats_tr_10k $ivector_append_tool ark:- '$ivector' ark:- |" -)
dim_ivec=$((dim_raw_and_ivec - dim_raw))
echo "# dims, feats-raw $dim_raw, ivectors $dim_ivec,"
# Should we do something with 'feature_transform'?
if [ ! -z $ivector_dim ]; then
# No, the 'ivector_dim' comes from dir with 'feature_transform' with iVec forwarding,
echo "# assuming we got '$feature_transform' with ivector forwarding,"
[ $ivector_dim != $dim_ivec ] && \
echo -n "Error, i-vector dimensionality mismatch!" && \
echo " (expected $ivector_dim, got $dim_ivec in $ivector)" && exit 1
else
# Yes, adjust the transform to do ``iVec forwarding'',
feature_transform_old=$feature_transform
feature_transform=${feature_transform%.nnet}_ivec_copy.nnet
echo "# setting up ivector forwarding into '$feature_transform',"
dim_transformed=$(feat-to-dim "$feats_tr_10k nnet-forward $feature_transform_old ark:- ark:- |" -)
nnet-initialize --print-args=false <(echo "<Copy> <InputDim> $dim_ivec <OutputDim> $dim_ivec <BuildVector> 1:$dim_ivec </BuildVector>") $dir/tr_ivec_copy.nnet
nnet-initialize --print-args=false <(echo "<ParallelComponent> <InputDim> $((dim_raw+dim_ivec)) <OutputDim> $((dim_transformed+dim_ivec)) \
<NestedNnetFilename> $feature_transform_old $dir/tr_ivec_copy.nnet </NestedNnetFilename>") $feature_transform
fi
echo $dim_ivec >$dir/ivector_dim # mark down the iVec dim!
echo $ivector_append_tool >$dir/ivector_append_tool
# pasting the iVecs to the features,
echo "# + ivector input '$ivector'"
feats_tr="$feats_tr $ivector_append_tool ark:- '$ivector' ark:- |"
feats_cv="$feats_cv $ivector_append_tool ark:- '$ivector' ark:- |"
fi
###### Show the final 'feature_transform' in the log,
echo
echo "### Showing the final 'feature_transform':"
nnet-info $feature_transform
echo "###"
###### MAKE LINK TO THE FINAL feature_transform, so the other scripts will find it ######
[ -f $dir/final.feature_transform ] && unlink $dir/final.feature_transform
(cd $dir; ln -s $(basename $feature_transform) final.feature_transform )
feature_transform=$dir/final.feature_transform
###### INITIALIZE THE NNET ######
echo
echo "# NN-INITIALIZATION"
if [ ! -z $nnet_init ]; then
echo "# using pre-initialized network '$nnet_init'"
elif [ ! -z $nnet_proto ]; then
echo "# initializing NN from prototype '$nnet_proto'";
nnet_init=$dir/nnet.init; log=$dir/log/nnet_initialize.log
nnet-initialize --seed=$seed $nnet_proto $nnet_init
else
echo "# getting input/output dims :"
# input-dim,
get_dim_from=$feature_transform
[ ! -z "$dbn" ] && get_dim_from="nnet-concat $feature_transform '$dbn' -|"
num_fea=$(feat-to-dim "$feats_tr_10k nnet-forward \"$get_dim_from\" ark:- ark:- |" -)
# output-dim,
[ -z $num_tgt ] && \
num_tgt=$(hmm-info --print-args=false $alidir/final.mdl | grep pdfs | awk '{ print $NF }')
# make network prototype,
nnet_proto=$dir/nnet.proto
echo "# genrating network prototype $nnet_proto"
case "$network_type" in
dnn)
utils/nnet/make_nnet_proto.py $proto_opts \
${bn_dim:+ --bottleneck-dim=$bn_dim} \
$num_fea $num_tgt $hid_layers $hid_dim >$nnet_proto
;;
cnn1d)
delta_order=$([ -z $delta_opts ] && echo "0" || { echo $delta_opts | tr ' ' '\n' | grep "delta[-_]order" | sed 's:^.*=::'; })
echo "Debug : $delta_opts, delta_order $delta_order"
utils/nnet/make_cnn_proto.py $cnn_proto_opts \
--splice=$splice --delta-order=$delta_order --dir=$dir \
$num_fea >$nnet_proto
cnn_fea=$(cat $nnet_proto | grep -v '^$' | tail -n1 | awk '{ print $5; }')
utils/nnet/make_nnet_proto.py $proto_opts \
--no-smaller-input-weights \
${bn_dim:+ --bottleneck-dim=$bn_dim} \
"$cnn_fea" $num_tgt $hid_layers $hid_dim >>$nnet_proto
;;
lstm)
utils/nnet/make_lstm_proto.py $proto_opts \
$num_fea $num_tgt >$nnet_proto
;;
blstm)
utils/nnet/make_blstm_proto.py $proto_opts \
$num_fea $num_tgt >$nnet_proto
;;
*) echo "Unknown : --network-type $network_type" && exit 1;
esac
# initialize,
nnet_init=$dir/nnet.init
echo "# initializing the NN '$nnet_proto' -> '$nnet_init'"
nnet-initialize --seed=$seed $nnet_proto $nnet_init
# optionally prepend dbn to the initialization,
if [ ! -z "$dbn" ]; then
nnet_init_old=$nnet_init; nnet_init=$dir/nnet_dbn_dnn.init
nnet-concat "$dbn" $nnet_init_old $nnet_init
fi
fi
###### TRAIN ######
echo
echo "# RUNNING THE NN-TRAINING SCHEDULER"
steps/nnet/train_scheduler.sh \
${scheduler_opts} \
${train_tool:+ --train-tool "$train_tool"} \
${train_tool_opts:+ --train-tool-opts "$train_tool_opts"} \
${feature_transform:+ --feature-transform $feature_transform} \
${split_feats:+ --split-feats $split_feats} \
--learn-rate $learn_rate \
${frame_weights:+ --frame-weights "$frame_weights"} \
${utt_weights:+ --utt-weights "$utt_weights"} \
${config:+ --config $config} \
$nnet_init "$feats_tr" "$feats_cv" "$labels_tr" "$labels_cv" $dir
echo "$0: Successfuly finished. '$dir'"
sleep 3
exit 0