train.sh 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
#!/bin/bash

# Copyright 2012-2017  Brno University of Technology (author: Karel Vesely)
# Apache 2.0

# Begin configuration.

config=             # config, also forwarded to 'train_scheduler.sh',

# topology, initialization,
network_type=dnn    # select type of neural network (dnn,cnn1d,cnn2d,lstm),
hid_layers=4        # nr. of hidden layers (before sotfmax or bottleneck),
hid_dim=1024        # number of neurons per layer,
bn_dim=             # (optional) adds bottleneck and one more hidden layer to the NN,
dbn=                # (optional) prepend layers to the initialized NN,

proto_opts=         # adds options to 'make_nnet_proto.py',
cnn_proto_opts=     # adds options to 'make_cnn_proto.py',

nnet_init=          # (optional) use this pre-initialized NN,
nnet_proto=         # (optional) use this NN prototype for initialization,

# feature processing,
splice=5            # (default) splice features both-ways along time axis,
online_cmvn_opts=   # (optional) adds 'apply-cmvn-online' to input feature pipeline, see opts,
cmvn_opts=          # (optional) adds 'apply-cmvn' to input feature pipeline, see opts,
delta_opts=         # (optional) adds 'add-deltas' to input feature pipeline, see opts,
ivector=            # (optional) adds 'append-vector-to-feats', the option is rx-filename for the 2nd stream,
ivector_append_tool=append-vector-to-feats # (optional) the tool for appending ivectors,

feat_type=plain
traps_dct_basis=11    # (feat_type=traps) nr. of DCT basis, 11 is good with splice=10,
transf=               # (feat_type=transf) import this linear tranform,
splice_after_transf=5 # (feat_type=transf) splice after the linear transform,

feature_transform_proto= # (optional) use this prototype for 'feature_transform',
feature_transform=  # (optional) directly use this 'feature_transform',

# labels,
labels=            # (optional) specify non-default training targets,
                   # (targets need to be in posterior format, see 'ali-to-post', 'feat-to-post'),
num_tgt=           # (optional) specifiy number of NN outputs, to be used with 'labels=',

# training scheduler,
learn_rate=0.008   # initial learning rate,
scheduler_opts=    # options, passed to the training scheduler,
train_tool=        # optionally change the training tool,
train_tool_opts=   # options for the training tool,
frame_weights=     # per-frame weights for gradient weighting,
utt_weights=       # per-utterance weights (scalar for --frame-weights),

# data processing, misc.
copy_feats=true     # resave the train/cv features into /tmp (disabled by default),
copy_feats_tmproot=/tmp/kaldi.XXXX # sets tmproot for 'copy-feats',
copy_feats_compress=true # compress feats while resaving
feats_std=1.0

split_feats=        # split the training data into N portions, one portion will be one 'epoch',
                    # (empty = no splitting)

seed=777            # seed value used for data-shuffling, nn-initialization, and training,
skip_cuda_check=false
skip_phoneset_check=false

# End configuration.

echo "$0 $@"  # Print the command line for logging

[ -f path.sh ] && . ./path.sh;
. parse_options.sh || exit 1;

set -euo pipefail

if [ $# != 6 ]; then
   echo "Usage: $0 <data-train> <data-dev> <lang-dir> <ali-train> <ali-dev> <exp-dir>"
   echo " e.g.: $0 data/train data/cv data/lang exp/mono_ali_train exp/mono_ali_cv exp/mono_nnet"
   echo ""
   echo " Training data : <data-train>,<ali-train> (for optimizing cross-entropy)"
   echo " Held-out data : <data-dev>,<ali-dev> (for learn-rate scheduling, model selection)"
   echo " note.: <ali-train>,<ali-dev> can point to same directory, or 2 separate directories."
   echo ""
   echo "main options (for others, see top of script file)"
   echo "  --config <config-file>   # config containing options"
   echo ""
   echo "  --network-type (dnn,cnn1d,cnn2d,lstm)  # type of neural network"
   echo "  --nnet-proto <file>      # use this NN prototype"
   echo "  --feature-transform <file> # re-use this input feature transform"
   echo ""
   echo "  --feat-type (plain|traps|transf) # type of input features"
   echo "  --cmvn-opts  <string>            # add 'apply-cmvn' to input feature pipeline"
   echo "  --delta-opts <string>            # add 'add-deltas' to input feature pipeline"
   echo "  --splice <N>                     # splice +/-N frames of input features"
   echo
   echo "  --learn-rate <float>     # initial leaning-rate"
   echo "  --copy-feats <bool>      # copy features to /tmp, lowers storage stress"
   echo ""
   exit 1;
fi

data=$1
data_cv=$2
lang=$3
alidir=$4
alidir_cv=$5
dir=$6

# Using alidir for supervision (default)
if [ -z "$labels" ]; then
  silphonelist=`cat $lang/phones/silence.csl`
  for f in $alidir/final.mdl $alidir/ali.1.gz $alidir_cv/ali.1.gz; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
fi

for f in $data/feats.scp $data_cv/feats.scp; do
  [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done

echo
echo "# INFO"
echo "$0 : Training Neural Network"
printf "\t dir       : $dir \n"
printf "\t Train-set : $data $(cat $data/feats.scp | wc -l), $alidir \n"
printf "\t CV-set    : $data_cv $(cat $data_cv/feats.scp | wc -l) $alidir_cv \n"
echo

mkdir -p $dir/{log,nnet}

if ! $skip_phoneset_check; then
  utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt
  utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir_cv/phones.txt
  cp $lang/phones.txt $dir
fi

# skip when already trained,
if [ -e $dir/final.nnet ]; then
  echo "SKIPPING TRAINING... ($0)"
  echo "nnet already trained : $dir/final.nnet ($(readlink $dir/final.nnet))"
  exit 0
fi

# check if CUDA compiled in and GPU is available,
if ! $skip_cuda_check; then cuda-gpu-available || exit 1; fi

###### PREPARE ALIGNMENTS ######
echo
echo "# PREPARING ALIGNMENTS"
if [ ! -z "$labels" ]; then
  echo "Using targets '$labels' (by force)"
  labels_tr="$labels"
  labels_cv="$labels"
else
  echo "Using PDF targets from dirs '$alidir' '$alidir_cv'"
  # training targets in posterior format,
  labels_tr="ark:ali-to-pdf $alidir/final.mdl \"ark:gunzip -c $alidir/ali.*.gz |\" ark:- | ali-to-post ark:- ark:- |"
  labels_cv="ark:ali-to-pdf $alidir/final.mdl \"ark:gunzip -c $alidir_cv/ali.*.gz |\" ark:- | ali-to-post ark:- ark:- |"
  # training targets for analyze-counts,
  labels_tr_pdf="ark:ali-to-pdf $alidir/final.mdl \"ark:gunzip -c $alidir/ali.*.gz |\" ark:- |"
  labels_tr_phn="ark:ali-to-phones --per-frame=true $alidir/final.mdl \"ark:gunzip -c $alidir/ali.*.gz |\" ark:- |"

  # get pdf-counts, used later for decoding/aligning,
  num_pdf=$(hmm-info $alidir/final.mdl | awk '/pdfs/{print $4}')
  analyze-counts --verbose=1 --binary=false --counts-dim=$num_pdf \
    ${frame_weights:+ "--frame-weights=$frame_weights"} \
    ${utt_weights:+ "--utt-weights=$utt_weights"} \
    "$labels_tr_pdf" $dir/ali_train_pdf.counts 2>$dir/log/analyze_counts_pdf.log
  # copy the old transition model, will be needed by decoder,
  copy-transition-model --binary=false $alidir/final.mdl $dir/final.mdl
  # copy the tree
  cp $alidir/tree $dir/tree

  # make phone counts for analysis,
  [ -e $lang/phones.txt ] && analyze-counts --verbose=1 --symbol-table=$lang/phones.txt --counts-dim=$num_pdf \
    ${frame_weights:+ "--frame-weights=$frame_weights"} \
    ${utt_weights:+ "--utt-weights=$utt_weights"} \
    "$labels_tr_phn" /dev/null 2>$dir/log/analyze_counts_phones.log
fi

###### PREPARE FEATURES ######
echo
echo "# PREPARING FEATURES"
if [ "$copy_feats" == "true" ]; then
  echo "# re-saving features to local disk,"
  tmpdir=$(mktemp -d $copy_feats_tmproot)
  copy-feats --compress=$copy_feats_compress scp:$data/feats.scp ark,scp:$tmpdir/train.ark,$dir/train_sorted.scp
  copy-feats --compress=$copy_feats_compress scp:$data_cv/feats.scp ark,scp:$tmpdir/cv.ark,$dir/cv.scp
  trap "echo '# Removing features tmpdir $tmpdir @ $(hostname)'; ls $tmpdir; rm -r $tmpdir" EXIT
else
  # or copy the list,
  cp $data/feats.scp $dir/train_sorted.scp
  cp $data_cv/feats.scp $dir/cv.scp
fi
# shuffle the list,
utils/shuffle_list.pl --srand ${seed:-777} <$dir/train_sorted.scp >$dir/train.scp

# create a 10k utt subset for global cmvn estimates,
head -n 10000 $dir/train.scp > $dir/train.scp.10k

# split the list,
if [ -n "$split_feats" ]; then
  scps= # 1..split_feats,
  for (( ii=1; ii<=$split_feats; ii++ )); do scps="$scps $dir/train.${ii}.scp"; done
  utils/split_scp.pl $dir/train.scp $scps
fi

# for debugging, add lists with non-local features,
utils/shuffle_list.pl --srand ${seed:-777} <$data/feats.scp >$dir/train.scp_non_local
cp $data_cv/feats.scp $dir/cv.scp_non_local

###### OPTIONALLY IMPORT FEATURE SETTINGS (from pre-training) ######
ivector_dim= # no ivectors,
if [ -n "$feature_transform" ]; then
  D=$(dirname $feature_transform)
  echo "# importing feature settings from dir '$D'"
  [ -e $D/online_cmvn_opts ] && online_cmvn_opts=$(cat $D/online_cmvn_opts)
  [ -e $D/cmvn_opts ] && cmvn_opts=$(cat $D/cmvn_opts)
  [ -e $D/delta_opts ] && delta_opts=$(cat $D/delta_opts)
  [ -e $D/ivector_dim ] && ivector_dim=$(cat $D/ivector_dim)
  [ -e $D/ivector_append_tool ] && ivector_append_tool=$(cat $D/ivector_append_tool)
  echo "# cmvn_opts='$cmvn_opts' delta_opts='$delta_opts' ivector_dim='$ivector_dim'"
fi

###### PREPARE FEATURE PIPELINE ######
# read the features,
feats_tr="ark:copy-feats scp:$dir/train.scp ark:- |"
feats_cv="ark:copy-feats scp:$dir/cv.scp ark:- |"

# optionally add per-speaker CMVN,
[ -n "$online_cmvn_opts" -a -n "$cmvn_opts" ] && echo "Error: use \$online_cmvn_opts or \$cmvn_opts, not both!" && exit 1
if [ -n "$online_cmvn_opts" ]; then
  echo "# + 'apply-cmvn-online' with '$online_cmvn_opts' is used,"
  global_cmvn_stats=$dir/global_cmvn_stats.mat
  matrix-sum --binary=false scp:$data/cmvn.scp $global_cmvn_stats
  feats_tr="$feats_tr apply-cmvn-online $online_cmvn_opts $global_cmvn_stats ark:- ark:- |"
  feats_cv="$feats_cv apply-cmvn-online $online_cmvn_opts $global_cmvn_stats ark:- ark:- |"
elif [ -n "$cmvn_opts" ]; then
  echo "# + 'apply-cmvn' with '$cmvn_opts' using statistics : $data/cmvn.scp, $data_cv/cmvn.scp"
  [ ! -r $data/cmvn.scp ] && echo "Missing $data/cmvn.scp" && exit 1;
  [ ! -r $data_cv/cmvn.scp ] && echo "Missing $data_cv/cmvn.scp" && exit 1;
  feats_tr="$feats_tr apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp ark:- ark:- |"
  feats_cv="$feats_cv apply-cmvn $cmvn_opts --utt2spk=ark:$data_cv/utt2spk scp:$data_cv/cmvn.scp ark:- ark:- |"
else
  echo "# 'apply-cmvn' is not used,"
fi

# optionally add deltas,
if [ ! -z "$delta_opts" ]; then
  feats_tr="$feats_tr add-deltas $delta_opts ark:- ark:- |"
  feats_cv="$feats_cv add-deltas $delta_opts ark:- ark:- |"
  echo "# + 'add-deltas' with '$delta_opts'"
fi

# keep track of the config,
[ -n "$online_cmvn_opts" ] && echo "$online_cmvn_opts" >$dir/online_cmvn_opts
[ -n "$cmvn_opts" ] && echo "$cmvn_opts" >$dir/cmvn_opts
[ -n "$delta_opts" ] && echo "$delta_opts" >$dir/delta_opts
#

# temoprary pipeline with first 10k,
feats_tr_10k="${feats_tr/train.scp/train.scp.10k}"

# get feature dim,
feat_dim=$(feat-to-dim "$feats_tr_10k" -)
echo "# feature dim : $feat_dim (input of 'feature_transform')"

# Now we start building 'feature_transform' which goes right in front of a NN.
# The forwarding is computed on a GPU before the frame shuffling is applied.
#
# Same GPU is used both for 'feature_transform' and the NN training.
# So it has to be done by a single process (we are using exclusive mode).
# This also reduces the CPU-GPU uploads/downloads to minimum.

if [ -n "$feature_transform" ]; then
  echo "# importing 'feature_transform' from '$feature_transform'"
  tmp=$dir/imported_$(basename $feature_transform)
  cp $feature_transform $tmp; feature_transform=$tmp
else
  # Make default proto with splice,
  if [ -n "$feature_transform_proto" ]; then
    echo "# importing custom 'feature_transform_proto' from '$feature_transform_proto'"
  else
    echo "# + default 'feature_transform_proto' with splice +/-$splice frames,"
    feature_transform_proto=$dir/splice${splice}.proto
    echo "<Splice> <InputDim> $feat_dim <OutputDim> $(((2*splice+1)*feat_dim)) <BuildVector> -$splice:$splice </BuildVector>" >$feature_transform_proto
  fi

  # Initialize 'feature-transform' from a prototype,
  feature_transform=$dir/tr_$(basename $feature_transform_proto .proto).nnet
  nnet-initialize --binary=false $feature_transform_proto $feature_transform

  # Choose further processing of spliced features
  echo "# feature type : $feat_type"
  case $feat_type in
    plain)
    ;;
    traps)
      #generate hamming+dct transform
      feature_transform_old=$feature_transform
      feature_transform=${feature_transform%.nnet}_hamm_dct${traps_dct_basis}.nnet
      echo "# + Hamming DCT transform (t$((splice*2+1)),dct${traps_dct_basis}) into '$feature_transform'"
      #prepare matrices with time-transposed hamming and dct
      utils/nnet/gen_hamm_mat.py --fea-dim=$feat_dim --splice=$splice > $dir/hamm.mat
      utils/nnet/gen_dct_mat.py --fea-dim=$feat_dim --splice=$splice --dct-basis=$traps_dct_basis > $dir/dct.mat
      #put everything together
      compose-transforms --binary=false $dir/dct.mat $dir/hamm.mat - | \
        transf-to-nnet - - | \
        nnet-concat --binary=false $feature_transform_old - $feature_transform
    ;;
    transf)
      feature_transform_old=$feature_transform
      feature_transform=${feature_transform%.nnet}_transf_splice${splice_after_transf}.nnet
      [ -z $transf ] && transf=$alidir/final.mat
      [ ! -f $transf ] && echo "Missing transf $transf" && exit 1
      feat_dim=$(feat-to-dim "$feats_tr_10k nnet-forward 'nnet-concat $feature_transform_old \"transf-to-nnet $transf - |\" - |' ark:- ark:- |" -)
      nnet-concat --binary=false $feature_transform_old \
        "transf-to-nnet $transf - |" \
        "utils/nnet/gen_splice.py --fea-dim=$feat_dim --splice=$splice_after_transf |" \
        $feature_transform
    ;;
    *)
      echo "Unknown feature type $feat_type"
      exit 1;
    ;;
  esac

  # keep track of feat_type,
  echo $feat_type > $dir/feat_type

  # Renormalize the MLP input to zero mean and unit variance,
  feature_transform_old=$feature_transform
  feature_transform=${feature_transform%.nnet}_cmvn-g.nnet
  echo "# compute normalization stats from 10k sentences"
  nnet-forward --print-args=true --use-gpu=yes $feature_transform_old \
    "$feats_tr_10k" ark:- |\
    compute-cmvn-stats ark:- $dir/cmvn-g.stats
  echo "# + normalization of NN-input at '$feature_transform'"
  nnet-concat --binary=false $feature_transform_old \
    "cmvn-to-nnet --std-dev=$feats_std $dir/cmvn-g.stats -|" $feature_transform
fi

if [ ! -z $ivector ]; then
  echo
  echo "# ADDING IVECTOR FEATURES"
  # The iVectors are concatenated 'as they are' directly to the input of the neural network,
  # To do this, we paste the features, and use <ParallelComponent> where the 1st component
  # contains the transform and 2nd network contains <Copy> component.

  echo "# getting dims,"
  dim_raw=$(feat-to-dim "$feats_tr_10k" -)
  dim_raw_and_ivec=$(feat-to-dim "$feats_tr_10k $ivector_append_tool ark:- '$ivector' ark:- |" -)
  dim_ivec=$((dim_raw_and_ivec - dim_raw))
  echo "# dims, feats-raw $dim_raw, ivectors $dim_ivec,"

  # Should we do something with 'feature_transform'?
  if [ ! -z $ivector_dim ]; then
    # No, the 'ivector_dim' comes from dir with 'feature_transform' with iVec forwarding,
    echo "# assuming we got '$feature_transform' with ivector forwarding,"
    [ $ivector_dim != $dim_ivec ] && \
    echo -n "Error, i-vector dimensionality mismatch!" && \
    echo " (expected $ivector_dim, got $dim_ivec in $ivector)" && exit 1
  else
    # Yes, adjust the transform to do ``iVec forwarding'',
    feature_transform_old=$feature_transform
    feature_transform=${feature_transform%.nnet}_ivec_copy.nnet
    echo "# setting up ivector forwarding into '$feature_transform',"
    dim_transformed=$(feat-to-dim "$feats_tr_10k nnet-forward $feature_transform_old ark:- ark:- |" -)
    nnet-initialize --print-args=false <(echo "<Copy> <InputDim> $dim_ivec <OutputDim> $dim_ivec <BuildVector> 1:$dim_ivec </BuildVector>") $dir/tr_ivec_copy.nnet
    nnet-initialize --print-args=false <(echo "<ParallelComponent> <InputDim> $((dim_raw+dim_ivec)) <OutputDim> $((dim_transformed+dim_ivec)) \
                                               <NestedNnetFilename> $feature_transform_old $dir/tr_ivec_copy.nnet </NestedNnetFilename>") $feature_transform
  fi
  echo $dim_ivec >$dir/ivector_dim # mark down the iVec dim!
  echo $ivector_append_tool >$dir/ivector_append_tool

  # pasting the iVecs to the features,
  echo "# + ivector input '$ivector'"
  feats_tr="$feats_tr $ivector_append_tool ark:- '$ivector' ark:- |"
  feats_cv="$feats_cv $ivector_append_tool ark:- '$ivector' ark:- |"
fi

###### Show the final 'feature_transform' in the log,
echo
echo "### Showing the final 'feature_transform':"
nnet-info $feature_transform
echo "###"

###### MAKE LINK TO THE FINAL feature_transform, so the other scripts will find it ######
[ -f $dir/final.feature_transform ] && unlink $dir/final.feature_transform
(cd $dir; ln -s $(basename $feature_transform) final.feature_transform )
feature_transform=$dir/final.feature_transform


###### INITIALIZE THE NNET ######
echo
echo "# NN-INITIALIZATION"
if [ ! -z $nnet_init ]; then
  echo "# using pre-initialized network '$nnet_init'"
elif [ ! -z $nnet_proto ]; then
  echo "# initializing NN from prototype '$nnet_proto'";
  nnet_init=$dir/nnet.init; log=$dir/log/nnet_initialize.log
  nnet-initialize --seed=$seed $nnet_proto $nnet_init
else
  echo "# getting input/output dims :"
  # input-dim,
  get_dim_from=$feature_transform
  [ ! -z "$dbn" ] && get_dim_from="nnet-concat $feature_transform '$dbn' -|"
  num_fea=$(feat-to-dim "$feats_tr_10k nnet-forward \"$get_dim_from\" ark:- ark:- |" -)

  # output-dim,
  [ -z $num_tgt ] && \
    num_tgt=$(hmm-info --print-args=false $alidir/final.mdl | grep pdfs | awk '{ print $NF }')

  # make network prototype,
  nnet_proto=$dir/nnet.proto
  echo "# genrating network prototype $nnet_proto"
  case "$network_type" in
    dnn)
      utils/nnet/make_nnet_proto.py $proto_opts \
        ${bn_dim:+ --bottleneck-dim=$bn_dim} \
        $num_fea $num_tgt $hid_layers $hid_dim >$nnet_proto
      ;;
    cnn1d)
      delta_order=$([ -z $delta_opts ] && echo "0" || { echo $delta_opts | tr ' ' '\n' | grep "delta[-_]order" | sed 's:^.*=::'; })
      echo "Debug : $delta_opts, delta_order $delta_order"
      utils/nnet/make_cnn_proto.py $cnn_proto_opts \
        --splice=$splice --delta-order=$delta_order --dir=$dir \
        $num_fea >$nnet_proto
      cnn_fea=$(cat $nnet_proto | grep -v '^$' | tail -n1 | awk '{ print $5; }')
      utils/nnet/make_nnet_proto.py $proto_opts \
        --no-smaller-input-weights \
        ${bn_dim:+ --bottleneck-dim=$bn_dim} \
        "$cnn_fea" $num_tgt $hid_layers $hid_dim >>$nnet_proto
      ;;
    lstm)
      utils/nnet/make_lstm_proto.py $proto_opts \
        $num_fea $num_tgt >$nnet_proto
      ;;
    blstm)
      utils/nnet/make_blstm_proto.py $proto_opts \
        $num_fea $num_tgt >$nnet_proto
      ;;
    *) echo "Unknown : --network-type $network_type" && exit 1;
  esac

  # initialize,
  nnet_init=$dir/nnet.init
  echo "# initializing the NN '$nnet_proto' -> '$nnet_init'"
  nnet-initialize --seed=$seed $nnet_proto $nnet_init

  # optionally prepend dbn to the initialization,
  if [ ! -z "$dbn" ]; then
    nnet_init_old=$nnet_init; nnet_init=$dir/nnet_dbn_dnn.init
    nnet-concat "$dbn" $nnet_init_old $nnet_init
  fi
fi


###### TRAIN ######
echo
echo "# RUNNING THE NN-TRAINING SCHEDULER"
steps/nnet/train_scheduler.sh \
  ${scheduler_opts} \
  ${train_tool:+ --train-tool "$train_tool"} \
  ${train_tool_opts:+ --train-tool-opts "$train_tool_opts"} \
  ${feature_transform:+ --feature-transform $feature_transform} \
  ${split_feats:+ --split-feats $split_feats} \
  --learn-rate $learn_rate \
  ${frame_weights:+ --frame-weights "$frame_weights"} \
  ${utt_weights:+ --utt-weights "$utt_weights"} \
  ${config:+ --config $config} \
  $nnet_init "$feats_tr" "$feats_cv" "$labels_tr" "$labels_cv" $dir

echo "$0: Successfuly finished. '$dir'"

sleep 3
exit 0