align.sh
4.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/bin/bash
# Copyright 2012 Brno University of Technology (Author: Karel Vesely)
# 2013 Johns Hopkins University (Author: Daniel Povey)
# Apache 2.0
# Computes training alignments using DNN
# Begin configuration section.
nj=4
cmd=run.pl
# Begin configuration.
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
beam=10
retry_beam=40
transform_dir=
iter=final
use_gpu=no
online_ivector_dir=
feat_type= # you can set this to force it to use delta features.
# End configuration options.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh # source the path.
. parse_options.sh || exit 1;
if [ $# != 4 ]; then
echo "Usage: $0 [--transform-dir <transform-dir>] <data-dir> <lang-dir> <src-dir> <align-dir>"
echo "e.g.: $0 data/train data/lang exp/nnet4 exp/nnet4_ali"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --nj <nj> # number of parallel jobs"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
exit 1;
fi
data=$1
lang=$2
srcdir=$3
dir=$4
oov=`cat $lang/oov.int` || exit 1;
mkdir -p $dir/log
echo $nj > $dir/num_jobs
sdata=$data/split$nj
[[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
extra_files=
[ ! -z "$online_ivector_dir" ] && \
extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period"
for f in $srcdir/tree $srcdir/${iter}.mdl $data/feats.scp $lang/L.fst $extra_files; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
cp $srcdir/{tree,${iter}.mdl} $dir || exit 1;
## Set up features. Note: these are different from the normal features
## because we have one rspecifier that has the features for the entire
## training set, not separate ones for each batch.
if [ -z "$feat_type" ]; then
if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=raw; fi
fi
echo "$0: feature type is $feat_type"
cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null`
cp $srcdir/cmvn_opts $srcdir/splice_opts $dir 2>/dev/null
case $feat_type in
raw) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |"
;;
lda)
splice_opts=`cat $srcdir/splice_opts 2>/dev/null`
cp $srcdir/splice_opts $dir 2>/dev/null
cp $srcdir/final.mat $dir || exit 1;
feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
;;
*) echo "$0: invalid feature type $feat_type" && exit 1;
esac
if [ ! -z "$transform_dir" ]; then
echo "$0: using transforms from $transform_dir"
[ ! -s $transform_dir/num_jobs ] && \
echo "$0: expected $transform_dir/num_jobs to contain the number of jobs." && exit 1;
nj_orig=$(cat $transform_dir/num_jobs)
if [ $feat_type == "raw" ]; then trans=raw_trans;
else trans=trans; fi
if [ $feat_type == "lda" ] && ! cmp $transform_dir/final.mat $srcdir/final.mat; then
echo "$0: LDA transforms differ between $srcdir and $transform_dir"
exit 1;
fi
if [ ! -f $transform_dir/$trans.1 ]; then
echo "$0: expected $transform_dir/$trans.1 to exist (--transform-dir option)"
exit 1;
fi
if [ $nj -ne $nj_orig ]; then
# Copy the transforms into an archive with an index.
for n in $(seq $nj_orig); do cat $transform_dir/$trans.$n; done | \
copy-feats ark:- ark,scp:$dir/$trans.ark,$dir/$trans.scp || exit 1;
feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk scp:$dir/$trans.scp ark:- ark:- |"
else
# number of jobs matches with alignment dir.
feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/$trans.JOB ark:- ark:- |"
fi
fi
if [ ! -z "$online_ivector_dir" ]; then
ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1;
# note: subsample-feats, with negative n, will repeat each feature -n times.
feats="$feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $sdata/JOB/utt2spk $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |"
fi
echo "$0: aligning data in $data using model from $srcdir, putting alignments in $dir"
tra="ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata/JOB/text|";
$cmd JOB=1:$nj $dir/log/align.JOB.log \
compile-train-graphs --read-disambig-syms=$lang/phones/disambig.int $dir/tree $srcdir/${iter}.mdl $lang/L.fst "$tra" ark:- \| \
nnet-align-compiled $scale_opts --use-gpu=$use_gpu --beam=$beam --retry-beam=$retry_beam \
$srcdir/${iter}.mdl ark:- "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
steps/diagnostic/analyze_alignments.sh --cmd "$cmd" $lang $dir
echo "$0: done aligning data."