train_block.sh
18.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0.
# this is as train_tanh.sh but for on top of fbank feats-- we have block-diagonal
# transforms for the first few layers, on separate frequency bands.
# Otherwise it's tanh.
# Begin configuration section.
cmd=run.pl
num_epochs=15 # Number of epochs during which we reduce
# the learning rate; number of iteration is worked out from this.
num_epochs_extra=5 # Number of epochs after we stop reducing
# the learning rate.
num_iters_final=20 # Maximum number of final iterations to give to the
# optimization over the validation set.
initial_learning_rate=0.04
final_learning_rate=0.004
bias_stddev=0.0
shrink_interval=5 # shrink every $shrink_interval iters except while we are
# still adding layers, when we do it every iter.
shrink=true
num_frames_shrink=2000 # note: must be <= --num-frames-diagnostic option to get_egs.sh, if
# given.
softmax_learning_rate_factor=0.5 # Train this layer half as fast as the other layers.
hidden_layer_dim=300 # You may want this larger, e.g. 1024 or 2048.
minibatch_size=128 # by default use a smallish minibatch size for neural net
# training; this controls instability which would otherwise
# be a problem with multi-threaded update. Note: it also
# interacts with the "preconditioned" update which generally
# works better with larger minibatch size, so it's not
# completely cost free.
samples_per_iter=200000 # each iteration of training, see this many samples
# per job. This option is passed to get_egs.sh
num_jobs_nnet=16 # Number of neural net jobs to run in parallel. This option
# is passed to get_egs.sh.
get_egs_stage=0
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
add_layers_period=2 # by default, add new layers every 2 iterations.
num_block_layers=2
num_normal_layers=2
block_size=10
block_shift=5
stage=-5
io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time.
splice_width=7 # meaning +- 7 frames on each side for second LDA
randprune=4.0 # speeds up LDA.
alpha=4.0
max_change=10.0
mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
# specified.)
num_threads=16
parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know.
# note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
cleanup=true
egs_dir=
lda_opts=
egs_opts=
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 4 ]; then
echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>"
echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|15> # Number of epochs of main training"
echo " # while reducing learning rate (determines #iterations, together"
echo " # with --samples-per-iter and --num-jobs-nnet)"
echo " --num-epochs-extra <#epochs-extra|5> # Number of extra epochs of training"
echo " # after learning rate fully reduced"
echo " --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
echo " # data, 0.01 for large data"
echo " --final-learning-rate <final-learning-rate|0.004> # Learning rate at end of training, e.g. 0.004 for small"
echo " # data, 0.001 for large data"
echo " --num-hidden-layers <#hidden-layers|2> # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
echo " --initial-num-hidden-layers <#hidden-layers|1> # Number of hidden layers to start with."
echo " --add-layers-period <#iters|2> # Number of iterations between adding hidden layers"
echo " --mix-up <#pseudo-gaussians|0> # Can be used to have multiple targets in final output layer,"
echo " # per context-dependent state. Try a number several times #states."
echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net"
echo " # training (will affect results as well as speed; try 8, 16)"
echo " # Note: if you increase this, you may want to also increase"
echo " # the learning rate."
echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results"
echo " # as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... "
echo " --io-opts <opts|\"--max-jobs-run 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O."
echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads"
echo " # should not get too large, e.g. >2k)."
echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per"
echo " # process."
echo " --splice-width <width|4> # Number of frames on each side to append for feature input"
echo " # (note: we splice processed, typically 40-dimensional frames"
echo " --lda-dim <dim|250> # Dimension to reduce spliced features to with LDA"
echo " --num-iters-final <#iters|10> # Number of final iterations to give to nnet-combine-fast to "
echo " # interpolate parameters (the weights are learned with a validation set)"
echo " --num-utts-subset <#utts|300> # Number of utterances in subsets used for validation and diagnostics"
echo " # (the validation subset is held out from training)"
echo " --num-frames-diagnostic <#frames|4000> # Number of frames used in computing (train,valid) diagnostics"
echo " --num-valid-frames-combine <#frames|10000> # Number of frames used in getting combination weights at the"
echo " # very end."
echo " --stage <stage|-9> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
data=$1
lang=$2
alidir=$3
dir=$4
# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# Set some variables.
num_leaves=`gmm-info $alidir/final.mdl 2>/dev/null | awk '/number of pdfs/{print $NF}'` || exit 1;
nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log
echo $nj > $dir/num_jobs
cp $alidir/tree $dir
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
# Get list of validation utterances.
awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_utts_subset \
> $dir/valid_uttlist || exit 1;
awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid_uttlist | \
head -$num_utts_subset > $dir/train_subset_uttlist || exit 1;
if [ $stage -le -4 ]; then
echo "$0: calling get_lda.sh"
steps/nnet2/get_lda_block.sh --block-size $block_size --block-shift $block_shift \
$lda_opts --splice-width $splice_width --cmd "$cmd" $data $lang $alidir $dir || exit 1;
fi
# these files will have been written by get_lda_block.sh
feat_dim=`cat $dir/feat_dim` || exit 1;
lda_dim=`cat $dir/lda_dim` || exit 1;
num_blocks=`cat $dir/num_blocks` || exit 1;
if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then
echo "$0: calling get_egs.sh"
steps/nnet2/get_egs.sh --io-opts "$io_opts" --samples-per-iter $samples_per_iter \
--num-jobs-nnet $num_jobs_nnet \
--splice-width $splice_width --stage $get_egs_stage --cmd "$cmd" $egs_opts --feat-type raw \
$data $lang $alidir $dir || exit 1;
fi
if [ -z $egs_dir ]; then
egs_dir=$dir/egs
fi
iters_per_epoch=`cat $egs_dir/iters_per_epoch` || exit 1;
! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \
echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir"
num_jobs_nnet=`cat $egs_dir/num_jobs_nnet`
if [ $stage -le -2 ]; then
echo "$0: initializing neural net";
hidden_block_size=`perl -e "print int(sqrt(($hidden_layer_dim*$hidden_layer_dim)/$num_blocks));"`
echo "Hidden block size is $hidden_block_size"
hidden_block_dim=$[$hidden_block_size*$num_blocks]
block_stddev=`perl -e "print 1.0/sqrt($block_size);"`
hidden_block_stddev=`perl -e "print 1.0/sqrt($hidden_block_size);"`
first_hidden_layer_stddev=`perl -e "print 1.0/sqrt($hidden_block_dim);"`
stddev=`perl -e "print 1.0/sqrt($hidden_layer_dim);"`
cat >$dir/nnet.config <<EOF
SpliceComponent input-dim=$feat_dim left-context=$splice_width right-context=$splice_width
FixedAffineComponent matrix=$dir/lda.mat
BlockAffineComponentPreconditioned input-dim=$lda_dim output-dim=$hidden_block_dim alpha=$alpha learning-rate=$initial_learning_rate num-blocks=$num_blocks param-stddev=$block_stddev bias-stddev=$bias_stddev
TanhComponent dim=$hidden_block_dim
EOF
for n in `seq 2 $num_block_layers`; do
cat >>$dir/nnet.config <<EOF
BlockAffineComponentPreconditioned input-dim=$hidden_block_dim output-dim=$hidden_block_dim alpha=$alpha num-blocks=$num_blocks learning-rate=$initial_learning_rate param-stddev=$hidden_block_stddev bias-stddev=$bias_stddev
TanhComponent dim=$hidden_block_dim
EOF
done
cat >>$dir/nnet.config <<EOF
AffineComponentPreconditioned input-dim=$hidden_block_dim output-dim=$hidden_layer_dim alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=$first_hidden_layer_stddev bias-stddev=$bias_stddev
TanhComponent dim=$hidden_layer_dim
EOF
for n in `seq 2 $num_normal_layers`; do
cat >>$dir/nnet.config <<EOF
AffineComponentPreconditioned input-dim=$hidden_layer_dim output-dim=$hidden_layer_dim alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
TanhComponent dim=$hidden_layer_dim
EOF
done
cat >>$dir/nnet.config <<EOF
AffineComponentPreconditioned input-dim=$hidden_layer_dim output-dim=$num_leaves alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=0 bias-stddev=0
SoftmaxComponent dim=$num_leaves
EOF
$cmd $dir/log/nnet_init.log \
nnet-am-init $alidir/tree $lang/topo "nnet-init $dir/nnet.config -|" \
$dir/0.mdl || exit 1;
fi
if [ $stage -le -1 ]; then
echo "Training transition probabilities and setting priors"
$cmd $dir/log/train_trans.log \
nnet-train-transitions $dir/0.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl \
|| exit 1;
fi
num_iters_reduce=$[$num_epochs * $iters_per_epoch];
num_iters_extra=$[$num_epochs_extra * $iters_per_epoch];
num_iters=$[$num_iters_reduce+$num_iters_extra]
echo "$0: Will train for $num_epochs + $num_epochs_extra epochs, equalling "
echo "$0: $num_iters_reduce + $num_iters_extra = $num_iters iterations, "
echo "$0: (while reducing learning rate) + (with constant learning rate)."
# This is when we decide to mix up from: halfway between when we've finished
# adding the hidden layers and the end of training.
mix_up_iter=$[$num_iters/2]
if [ $num_threads -eq 1 ]; then
train_suffix="-simple" # this enables us to use GPU code if
# we have just one thread.
else
train_suffix="-parallel --num-threads=$num_threads"
fi
x=0
while [ $x -lt $num_iters ]; do
if [ $x -ge 0 ] && [ $stage -le $x ]; then
# Set off jobs doing some diagnostics, in the background.
$cmd $dir/log/compute_prob_valid.$x.log \
nnet-compute-prob $dir/$x.mdl ark:$egs_dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.$x.log \
nnet-compute-prob $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs &
if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then
$cmd $dir/log/progress.$x.log \
nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs &
fi
echo "Training neural net (pass $x)"
mdl=$dir/$x.mdl
$cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \
ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \
nnet-train$train_suffix \
--minibatch-size=$minibatch_size --srand=$x "$mdl" \
ark:- $dir/$[$x+1].JOB.mdl \
|| exit 1;
nnets_list=
for n in `seq 1 $num_jobs_nnet`; do
nnets_list="$nnets_list $dir/$[$x+1].$n.mdl"
done
learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters_reduce $initial_learning_rate $final_learning_rate`;
softmax_learning_rate=`perl -e "print $learning_rate * $softmax_learning_rate_factor;"`;
nnet-am-info $dir/$[$x+1].1.mdl > $dir/foo 2>/dev/null || exit 1
nu=`cat $dir/foo | grep num-updatable-components | awk '{print $2}'`
na=`cat $dir/foo | grep -v Fixed | grep AffineComponent | wc -l`
# na is number of last updatable AffineComponent layer [one-based, counting only
# updatable components.]
lr_string="$learning_rate"
for n in `seq 2 $nu`; do
if [ $n -eq $na ] || [ $n -eq $[$na-1] ]; then lr=$softmax_learning_rate;
else lr=$learning_rate; fi
lr_string="$lr_string:$lr"
done
$cmd $dir/log/average.$x.log \
nnet-am-average $nnets_list - \| \
nnet-am-copy --learning-rates=$lr_string - $dir/$[$x+1].mdl || exit 1;
if $shrink && [ $[$x % $shrink_interval] -eq 0 ]; then
mb=$[($num_frames_shrink+$num_threads-1)/$num_threads]
$cmd $parallel_opts $dir/log/shrink.$x.log \
nnet-subset-egs --n=$num_frames_shrink --randomize-order=true --srand=$x \
ark:$egs_dir/train_diagnostic.egs ark:- \| \
nnet-combine-fast --num-threads=$num_threads --verbose=3 --minibatch-size=$mb \
$dir/$[$x+1].mdl ark:- $dir/$[$x+1].mdl || exit 1;
else
# On other iters, do nnet-am-fix which is much faster and has roughly
# the same effect.
nnet-am-fix $dir/$[$x+1].mdl $dir/$[$x+1].mdl 2>$dir/log/fix.$x.log
fi
if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
# mix up.
echo Mixing up from $num_leaves to $mix_up components
$cmd $dir/log/mix_up.$x.log \
nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
$dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1;
fi
rm $nnets_list
fi
x=$[$x+1]
done
# Now do combination.
# At the end, final.mdl will be a combination of the last e.g. 10 models.
nnets_list=()
if [ $num_iters_final -gt $num_iters_extra ]; then
echo "Setting num_iters_final=$num_iters_extra"
fi
start=$[$num_iters-$num_iters_final+1]
for x in `seq $start $num_iters`; do
idx=$[$x-$start]
if [ $x -gt $mix_up_iter ]; then
nnets_list[$idx]=$dir/$x.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |"
fi
done
if [ $stage -le $num_iters ]; then
# Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
# if there are many models it can give out-of-memory error; set num-threads to 8
# to speed it up (this isn't ideal...)
this_num_threads=$num_threads
[ $this_num_threads -lt 8 ] && this_num_threads=8
num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
mb=$[($num_egs+$this_num_threads-1)/$this_num_threads]
[ $mb -gt 512 ] && mb=512
$cmd $parallel_opts $dir/log/combine.log \
nnet-combine-fast --use-gpu=no --num-threads=$this_num_threads \
--verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \
$dir/final.mdl || exit 1;
fi
# Compute the probability of the final, combined model with
# the same subset we used for the previous compute_probs, as the
# different subsets will lead to different probs.
$cmd $dir/log/compute_prob_valid.final.log \
nnet-compute-prob $dir/final.mdl ark:$egs_dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.final.log \
nnet-compute-prob $dir/final.mdl ark:$egs_dir/train_diagnostic.egs &
sleep 2
echo Done
if $cleanup; then
echo Cleaning up data
if [ $egs_dir == "$dir/egs" ]; then
steps/nnet2/remove_egs.sh $dir/egs
fi
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%10] -ne 0 ] && [ $x -lt $[$num_iters-$num_iters_final+1] ]; then
# delete all but every 10th model; don't delete the ones which combine to form the final model.
rm $dir/$x.mdl
fi
done
fi