train_pnorm_bottleneck_fast.sh 24.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
#!/bin/bash

# Copyright 2012-2014  Johns Hopkins University (Author: Daniel Povey).
#           2014  Pegah Ghahremani
# Apache 2.0.


# train_pnorm_fast.sh is a new, improved version of train_pnorm.sh, which uses
# the 'online' preconditioning method.  For GPUs it's about two times faster
# than before (although that's partly due to optimizations that will also help
# the old recipe), and for CPUs it gives better performance than the old method
# (I believe); also, the difference in optimization performance between CPU and
# GPU is almost gone.  The old train_pnorm.sh script is now deprecated.
# We made this a separate script because not all of the options that the
# old script accepted, are still accepted.

# Begin configuration section.
cmd=run.pl
num_epochs=15      # Number of epochs during which we reduce
                   # the learning rate; number of iterations is worked out from this.
num_epochs_extra=5 # Number of epochs after we stop reducing
                   # the learning rate.
num_iters_final=20 # Maximum number of final iterations to give to the
                   # optimization over the validation set (maximum)
initial_learning_rate=0.04
final_learning_rate=0.004
bias_stddev=0.5
pnorm_input_dim=3000
pnorm_output_dim=300
bottleneck_dim=42  # bottleneck layer dimensio
p=2
minibatch_size=128 # by default use a smallish minibatch size for neural net
                   # training; this controls instability which would otherwise
                   # be a problem with multi-threaded update.

samples_per_iter=200000 # each iteration of training, see this many samples
                        # per job.  This option is passed to get_egs.sh
num_jobs_nnet=16   # Number of neural net jobs to run in parallel.  This option
                   # is passed to get_egs.sh.
get_egs_stage=0
online_ivector_dir=

shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
                # on each iter.  You could set it to 0 or to a large value for complete
                # randomization, but this would both consume memory and cause spikes in
                # disk I/O.  Smaller is easier on disk and memory but less random.  It's
                # not a huge deal though, as samples are anyway randomized right at the start.
                # (the point of this is to get data in different minibatches on different iterations,
                # since in the preconditioning method, 2 samples in the same minibatch can
                # affect each others' gradients.

add_layers_period=2 # by default, add new layers every 2 iterations.
num_hidden_layers=3
stage=-5

io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time.   These don't
splice_width=4 # meaning +- 4 frames on each side for second LDA
randprune=4.0 # speeds up LDA.
alpha=4.0 # relates to preconditioning.
update_period=4 # relates to online preconditioning: says how often we update the subspace.
num_samples_history=2000 # relates to online preconditioning
max_change_per_sample=0.075
precondition_rank_in=20  # relates to online preconditioning
precondition_rank_out=80 # relates to online preconditioning

# this relates to perturbed training.
min_target_objf_change=0.1
target_multiplier=0 #  Set this to e.g. 1.0 to enable perturbed training.

mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
        # specified.)
num_threads=16
parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know.
  # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
combine_num_threads=8
combine_parallel_opts="--num-threads 8"  # queue options for the "combine" stage.
cleanup=true
egs_dir=
lda_opts=
lda_dim=
egs_opts=
transform_dir=     # If supplied, overrides alidir
cmvn_opts=  # will be passed to get_lda.sh and get_egs.sh, if supplied.
            # only relevant for "raw" features, not lda.
feat_type=  # Can be used to force "raw" features.
prior_subset_size=10000 # 10k samples per job, for computing priors.  Should be
                        # more than enough.
bottleneck_layer_num=$num_hidden_layers-2 # bottleneck layer number between hidden layer
                                          # eg. 2000|2000|420|2000 bottleneck_layer_num = 2
# End configuration section.


echo "$0 $@"  # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;

if [ $# != 4 ]; then
  echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>"
  echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet"
  echo ""
  echo "Main options (for others, see top of script file)"
  echo "  --config <config-file>                           # config file containing options"
  echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
  echo "  --num-epochs <#epochs|15>                        # Number of epochs of main training"
  echo "                                                   # while reducing learning rate (determines #iterations, together"
  echo "                                                   # with --samples-per-iter and --num-jobs-nnet)"
  echo "  --num-epochs-extra <#epochs-extra|5>             # Number of extra epochs of training"
  echo "                                                   # after learning rate fully reduced"
  echo "  --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
  echo "                                                       # data, 0.01 for large data"
  echo "  --final-learning-rate  <final-learning-rate|0.004>   # Learning rate at end of training, e.g. 0.004 for small"
  echo "                                                   # data, 0.001 for large data"
  echo "  --num-hidden-layers <#hidden-layers|2>           # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
  echo "  --add-layers-period <#iters|2>                   # Number of iterations between adding hidden layers"
  echo "  --mix-up <#pseudo-gaussians|0>                   # Can be used to have multiple targets in final output layer,"
  echo "                                                   # per context-dependent state.  Try a number several times #states."
  echo "  --num-jobs-nnet <num-jobs|8>                     # Number of parallel jobs to use for main neural net"
  echo "                                                   # training (will affect results as well as speed; try 8, 16)"
  echo "                                                   # Note: if you increase this, you may want to also increase"
  echo "                                                   # the learning rate."
  echo "  --num-threads <num-threads|16>                   # Number of parallel threads per job (will affect results"
  echo "                                                   # as well as speed; may interact with batch size; if you increase"
  echo "                                                   # this, you may want to decrease the batch size."
  echo "  --parallel-opts <opts|\"--num-threads 16 --mem 1G\">      # extra options to pass to e.g. queue.pl for processes that"
  echo "                                                   # use multiple threads... "
  echo "  --io-opts <opts|\"--max-jobs-run 10\">                      # Options given to e.g. queue.pl for jobs that do a lot of I/O."
  echo "  --minibatch-size <minibatch-size|128>            # Size of minibatch to process (note: product with --num-threads"
  echo "                                                   # should not get too large, e.g. >2k)."
  echo "  --samples-per-iter <#samples|400000>             # Number of samples of data to process per iteration, per"
  echo "                                                   # process."
  echo "  --splice-width <width|4>                         # Number of frames on each side to append for feature input"
  echo "                                                   # (note: we splice processed, typically 40-dimensional frames"
  echo "  --lda-dim <dim|250>                              # Dimension to reduce spliced features to with LDA"
  echo "  --num-iters-final <#iters|20>                    # Number of final iterations to give to nnet-combine-fast to "
  echo "                                                   # interpolate parameters (the weights are learned with a validation set)"
  echo "  --first-component-power <power|1.0>              # Power applied to output of first p-norm layer... setting this to"
  echo "                                                   # 0.5 seems to help under some circumstances."
  echo "  --stage <stage|-9>                               # Used to run a partially-completed training process from somewhere in"
  echo "                                                   # the middle."


  exit 1;
fi

data=$1
lang=$2
alidir=$3
dir=$4

# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
  [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done


# Set some variables.
truncate_comp_num=$[3*$num_hidden_layers+1]
num_leaves=`tree-info $alidir/tree 2>/dev/null | grep num-pdfs | awk '{print $2}'` || exit 1
[ -z $num_leaves ] && echo "\$num_leaves is unset" && exit 1
[ "$num_leaves" -eq "0" ] && echo "\$num_leaves is 0" && exit 1

nj=`cat $alidir/num_jobs` || exit 1;  # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj

mkdir -p $dir/log
echo $nj > $dir/num_jobs
cp $alidir/tree $dir

utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;

extra_opts=()
[ ! -z "$cmvn_opts" ] && extra_opts+=(--cmvn-opts "$cmvn_opts")
[ ! -z "$feat_type" ] && extra_opts+=(--feat-type $feat_type)
[ ! -z "$online_ivector_dir" ] && extra_opts+=(--online-ivector-dir $online_ivector_dir)
[ -z "$transform_dir" ] && transform_dir=$alidir
extra_opts+=(--transform-dir $transform_dir)
extra_opts+=(--splice-width $splice_width)

if [ $stage -le -4 ]; then
  echo "$0: calling get_lda.sh"
  steps/nnet2/get_lda.sh $lda_opts "${extra_opts[@]}" --cmd "$cmd" $data $lang $alidir $dir || exit 1;
fi

# these files will have been written by get_lda.sh
feat_dim=$(cat $dir/feat_dim) || exit 1;
ivector_dim=$(cat $dir/ivector_dim) || exit 1;
lda_dim=$(cat $dir/lda_dim) || exit 1;

if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then
  echo "$0: calling get_egs.sh"
  [ ! -z $spk_vecs_dir ] && egs_opts="$egs_opts --spk-vecs-dir $spk_vecs_dir";
  steps/nnet2/get_egs.sh $egs_opts "${extra_opts[@]}" \
      --samples-per-iter $samples_per_iter \
      --num-jobs-nnet $num_jobs_nnet --stage $get_egs_stage \
      --cmd "$cmd" $egs_opts --io-opts "$io_opts" \
      $data $lang $alidir $dir || exit 1;
fi

if [ -z $egs_dir ]; then
  egs_dir=$dir/egs
fi

iters_per_epoch=`cat $egs_dir/iters_per_epoch`  || exit 1;
! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \
  echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir"
num_jobs_nnet=`cat $egs_dir/num_jobs_nnet` || exit 1;


if ! [ $num_hidden_layers -ge 1 ]; then
  echo "Invalid num-hidden-layers $num_hidden_layers"
  exit 1
fi

if [ $stage -le -2 ]; then
  echo "$0: initializing neural net";
  lda_mat=$dir/lda.mat
  tot_input_dim=$[$feat_dim+$ivector_dim]

  online_preconditioning_opts="alpha=$alpha num-samples-history=$num_samples_history update-period=$update_period rank-in=$precondition_rank_in rank-out=$precondition_rank_out max-change-per-sample=$max_change_per_sample"

  stddev=`perl -e "print 1.0/sqrt($pnorm_input_dim);"`
  cat >$dir/nnet.config <<EOF
SpliceComponent input-dim=$tot_input_dim left-context=$splice_width right-context=$splice_width const-component-dim=$ivector_dim
FixedAffineComponent matrix=$lda_mat
AffineComponentPreconditionedOnline input-dim=$lda_dim output-dim=$pnorm_input_dim $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim p=$p
NormalizeComponent dim=$pnorm_output_dim
AffineComponentPreconditionedOnline input-dim=$pnorm_output_dim output-dim=$num_leaves $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=0 bias-stddev=0
SoftmaxComponent dim=$num_leaves
EOF

  # to hidden.config it will write the part of the config corresponding to a
  # single hidden layer; we need this to add new layers.
  cat >$dir/hidden.config <<EOF
AffineComponentPreconditionedOnline input-dim=$pnorm_output_dim output-dim=$pnorm_input_dim $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim p=$p
NormalizeComponent dim=$pnorm_output_dim
EOF

bnf_input_dim=$((10 * $bottleneck_dim))
bnf_output_dim=$bottleneck_dim
echo bnf_input_dim = $bnf_input_dim
  bottleneck_stddev=`perl -e "print 1.0/sqrt($bnf_input_dim);"`
  # bnf.config it will write the part of th config corresponding to a
  # bottleneck layer; we need this to add bottleneck layer.
  cat >$dir/bnf.config <<EOF
AffineComponentPreconditionedOnline input-dim=$pnorm_output_dim output-dim=$bnf_input_dim $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=$bottleneck_stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$bnf_input_dim output-dim=$bnf_output_dim p=$p
NormalizeComponent dim=$bnf_output_dim
AffineComponentPreconditionedOnline input-dim=$bnf_output_dim output-dim=$pnorm_input_dim $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim  p=$p
NormalizeComponent dim=$pnorm_output_dim
EOF
  $cmd $dir/log/nnet_init.log \
    nnet-am-init $alidir/tree $lang/topo "nnet-init $dir/nnet.config -|" \
    $dir/0.mdl || exit 1;
fi

if [ $stage -le -1 ]; then
  echo "Training transition probabilities and setting priors"
  $cmd $dir/log/train_trans.log \
    nnet-train-transitions $dir/0.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl \
    || exit 1;
fi

num_iters_reduce=$[$num_epochs * $iters_per_epoch];
num_iters_extra=$[$num_epochs_extra * $iters_per_epoch];
num_iters=$[$num_iters_reduce+$num_iters_extra]

echo "$0: Will train for $num_epochs + $num_epochs_extra epochs, equalling "
echo "$0: $num_iters_reduce + $num_iters_extra = $num_iters iterations, "
echo "$0: (while reducing learning rate) + (with constant learning rate)."


function set_target_objf_change {
  # nothing to do if $target_multiplier not set.
  [ "$target_multiplier" == "0" -o "$target_multiplier" == "0.0" ] && return;
  [ $x -le $finish_add_layers_iter ] && return;
  wait=2  # the compute_prob_{train,valid} from 2 iterations ago should
          # most likey be done even though we backgrounded them.
  [ $[$x-$wait] -le 0 ] && return;
  while true; do
    # Note: awk 'some-expression' is the same as: awk '{if(some-expression) print;}'
    train_prob=$(awk '(NF == 1)' < $dir/log/compute_prob_train.$[$x-$wait].log)
    valid_prob=$(awk '(NF == 1)' < $dir/log/compute_prob_valid.$[$x-$wait].log)
    if [ -z "$train_prob" ] || [ -z "$valid_prob" ]; then
      echo "$0: waiting until $dir/log/compute_prob_{train,valid}.$[$x-$wait].log are done"
      sleep 60
    else
      target_objf_change=$(perl -e '($train,$valid,$min_change,$multiplier)=@ARGV; if (!($train < 0.0) || !($valid < 0.0)) { print "0\n"; print STDERR "Error: invalid train or valid prob: $train_prob, $valid_prob\n"; exit(0); } else { print STDERR "train,valid=$train,$valid\n"; $proposed_target = $multiplier * ($train-$valid); if ($proposed_target < $min_change) { print "0"; } else { print $proposed_target; }}' -- "$train_prob" "$valid_prob" "$min_target_objf_change" "$target_multiplier")
      echo "On iter $x, (train,valid) probs from iter $[$x-$wait] were ($train_prob,$valid_prob), and setting target-objf-change to $target_objf_change."
      return;
    fi
  done
}

finish_add_layers_iter=$[$num_hidden_layers * $add_layers_period]
# This is when we decide to mix up from: halfway between when we've finished
# adding the hidden layers and the end of training.
mix_up_iter=$[($num_iters + $finish_add_layers_iter)/2]

if [ $num_threads -eq 1 ]; then
  parallel_suffix="-simple" # this enables us to use GPU code if
                         # we have just one thread.
  parallel_train_opts=
  if ! cuda-compiled; then
    echo "$0: WARNING: you are running with one thread but you have not compiled"
    echo "   for CUDA.  You may be running a setup optimized for GPUs.  If you have"
    echo "   GPUs and have nvcc installed, go to src/ and do ./configure; make"
  fi
else
  parallel_suffix="-parallel"
  parallel_train_opts="--num-threads=$num_threads"
fi

x=0
target_objf_change=0 # relates to perturbed training.

while [ $x -lt $num_iters ]; do
  if [ $x -ge 0 ] && [ $stage -le $x ]; then
    # Set off jobs doing some diagnostics, in the background.
    $cmd $dir/log/compute_prob_valid.$x.log \
      nnet-compute-prob $dir/$x.mdl ark:$egs_dir/valid_diagnostic.egs &
    $cmd $dir/log/compute_prob_train.$x.log \
      nnet-compute-prob $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs &
    if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then
      $cmd $dir/log/progress.$x.log \
        nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl \
          ark:$egs_dir/train_diagnostic.egs '&&' \
        nnet-am-info $dir/$x.mdl &
    fi

    echo "Training neural net (pass $x)"

    if [ $x -gt 0 ] && \
      [ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \
      [ $[($x-1) % $add_layers_period] -eq 0 ]; then
      if [ $[($x-1) / $add_layers_period] -eq $[($num_hidden_layers-2)] ]; then
        echo bnf layer with x = $x
        mdl="nnet-init --srand=$x $dir/bnf.config - | nnet-insert $dir/$x.mdl - - |"
      else
        mdl="nnet-init --srand=$x $dir/hidden.config - | nnet-insert $dir/$x.mdl - - |"
      fi
    else
      mdl=$dir/$x.mdl
    fi
    if [ $x -eq 0 ] || [ "$mdl" != "$dir/$x.mdl" ]; then
      # on iteration zero or when we just added a layer, use a smaller minibatch
      # size and just one job: the model-averaging doesn't seem to be helpful
      # when the model is changing too fast (i.e. it worsens the objective
      # function), and the smaller minibatch size will help to keep
      # the update stable.
      this_minibatch_size=$[$minibatch_size/2];
      do_average=false
    else
      this_minibatch_size=$minibatch_size
      do_average=true
    fi

    set_target_objf_change;  # only has effect if target_multiplier != 0
    if [ "$target_objf_change" != "0" ]; then
      [ ! -f $dir/within_covar.spmat ] && \
        echo "$0: expected $dir/within_covar.spmat to exist." && exit 1;
      perturb_suffix="-perturbed"
      perturb_opts="--target-objf-change=$target_objf_change --within-covar=$dir/within_covar.spmat"
    fi

    $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
      nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \
      ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \
       nnet-train$parallel_suffix$perturb_suffix $parallel_train_opts $perturb_opts \
        --minibatch-size=$this_minibatch_size --srand=$x "$mdl" \
        ark:- $dir/$[$x+1].JOB.mdl \
      || exit 1;

    nnets_list=
    for n in `seq 1 $num_jobs_nnet`; do
      nnets_list="$nnets_list $dir/$[$x+1].$n.mdl"
    done

    learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters_reduce $initial_learning_rate $final_learning_rate`;

    if $do_average; then
      $cmd $dir/log/average.$x.log \
        nnet-am-average $nnets_list - \| \
        nnet-am-copy --learning-rate=$learning_rate - $dir/$[$x+1].mdl || exit 1;
    else
      n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) {
          $fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn";
          undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } }
          close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob;
          $best_n=$n; } } print "$best_n\n"; ' $num_jobs_nnet $dir/log/train.$x.%d.log) || exit 1;
      [ -z "$n" ] && echo "Error getting best model" && exit 1;
      $cmd $dir/log/select.$x.log \
        nnet-am-copy --learning-rate=$learning_rate $dir/$[$x+1].$n.mdl $dir/$[$x+1].mdl || exit 1;
    fi

    if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
      # mix up.
      echo Mixing up from $num_leaves to $mix_up components
      $cmd $dir/log/mix_up.$x.log \
        nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
        $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1;
    fi
    rm $nnets_list
    [ ! -f $dir/$[$x+1].mdl ] && exit 1;
    if [ -f $dir/$[$x-1].mdl ] && $cleanup && \
       [ $[($x-1)%100] -ne 0  ] && [ $[$x-1] -le $[$num_iters-$num_iters_final] ]; then
      rm $dir/$[$x-1].mdl
    fi
  fi
  x=$[$x+1]
done

# Now do combination.
# At the end, final.mdl will be a combination of the last e.g. 10 models.
nnets_list=()
if [ $num_iters_final -gt $num_iters_extra ]; then
  echo "Setting num_iters_final=$num_iters_extra"
fi
start=$[$num_iters-$num_iters_final+1]
for x in `seq $start $num_iters`; do
  idx=$[$x-$start]
  if [ $x -gt $mix_up_iter ]; then
    nnets_list[$idx]=$dir/$x.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |"
  fi
done

if [ $stage -le $num_iters ]; then
  echo "Doing final combination to produce final.mdl"
  # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
  # if there are many models it can give out-of-memory error; set num-threads to 8
  # to speed it up (this isn't ideal...)
  num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
  mb=$[($num_egs+$combine_num_threads-1)/$combine_num_threads]
  [ $mb -gt 512 ] && mb=512
  # Setting --initial-model to a large value makes it initialize the combination
  # with the average of all the models.  It's important not to start with a
  # single model, or, due to the invariance to scaling that these nonlinearities
  # give us, we get zero diagonal entries in the fisher matrix that
  # nnet-combine-fast uses for scaling, which after flooring and inversion, has
  # the effect that the initial model chosen gets much higher learning rates
  # than the others.  This prevents the optimization from working well.
  $cmd $combine_parallel_opts $dir/log/combine.log \
    nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
      --num-threads=$combine_num_threads \
      --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \
      $dir/final.mdl || exit 1;

  # Normalize stddev for affine or block affine layers that are followed by a
  # pnorm layer and then a normalize layer.
  $cmd $dir/log/normalize.log \
    nnet-normalize-stddev $dir/final.mdl $dir/final.mdl || exit 1;

  # Compute the probability of the final, combined model with
  # the same subset we used for the previous compute_probs, as the
  # different subsets will lead to different probs.
  $cmd $dir/log/compute_prob_valid.final.log \
    nnet-compute-prob $dir/final.mdl ark:$egs_dir/valid_diagnostic.egs &
  $cmd $dir/log/compute_prob_train.final.log \
    nnet-compute-prob $dir/final.mdl ark:$egs_dir/train_diagnostic.egs &
fi

if [ $stage -le $[$num_iters+1] ]; then
  echo "Getting average posterior for purposes of adjusting the priors."
  # Note: this just uses CPUs, using a smallish subset of data.
  rm $dir/post.*.vec 2>/dev/null
  $cmd JOB=1:$num_jobs_nnet $dir/log/get_post.JOB.log \
    nnet-subset-egs --n=$prior_subset_size ark:$egs_dir/egs.JOB.0.ark ark:- \| \
    nnet-compute-from-egs "nnet-to-raw-nnet $dir/final.mdl -|" ark:- ark:- \| \
    matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.JOB.vec || exit 1;

  sleep 3;  # make sure there is time for $dir/post.*.vec to appear.

  $cmd $dir/log/vector_sum.log \
   vector-sum $dir/post.*.vec $dir/post.vec || exit 1;

  rm $dir/post.*.vec;

  echo "Re-adjusting priors based on computed posteriors"
  $cmd $dir/log/adjust_priors.log \
    nnet-adjust-priors $dir/final.mdl $dir/post.vec $dir/final.mdl || exit 1;
fi


sleep 2

echo Done

if $cleanup; then
  echo Cleaning up data
  if [ $egs_dir == "$dir/egs" ]; then
    steps/nnet2/remove_egs.sh $dir/egs
  fi
fi
name=`basename $data`
if [ -f $dir/final.mdl ]; then
  nnet-to-raw-nnet --truncate=$truncate_comp_num $dir/final.mdl $dir/final.raw
else
  echo "$0: we require final.mdl in source dir $dir"
fi