train_pnorm_simple.sh
24.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#!/bin/bash
# Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey).
# 2013 Xiaohui Zhang
# 2013 Guoguo Chen
# 2014 Vimal Manohar
# Apache 2.0.
# train_pnorm_simple.sh is a modified version of train_pnorm_fast.sh. Like
# train_pnorm_fast.sh, it uses the `online' preconditioning, which is faster
# (especially on GPUs). The difference is that the learning-rate schedule is
# simpler, with the learning rate exponentially decreasing during training,
# and no phase where the learning rate is constant.
#
# Also, the final model-combination is done a bit differently: we combine models
# over typically a whole epoch, and because that would be too many iterations to
# easily be able to combine over, we arrange the iterations into groups (20
# groups by default) and average over each group.
#
# [Vimal Manohar - Oct 2014]
# The script now supports realignment during training, which can be done by
# specifying realign_epochs.
# Begin configuration section.
cmd=run.pl
num_epochs=15 # Number of epochs of training;
# the number of iterations is worked out from this.
initial_learning_rate=0.04
final_learning_rate=0.004
bias_stddev=0.5
pnorm_input_dim=3000
pnorm_output_dim=300
p=2
minibatch_size=128 # by default use a smallish minibatch size for neural net
# training; this controls instability which would otherwise
# be a problem with multi-threaded update.
samples_per_iter=400000 # each iteration of training, see this many samples
# per job. This option is passed to get_egs.sh
num_jobs_nnet=16 # Number of neural net jobs to run in parallel. This option
# is passed to get_egs.sh.
get_egs_stage=0
online_ivector_dir=
max_models_combine=20 # The "max_models_combine" is the maximum number of models we give
# to the final 'combine' stage, but these models will themselves be averages of
# iteration-number ranges.
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
# (the point of this is to get data in different minibatches on different iterations,
# since in the preconditioning method, 2 samples in the same minibatch can
# affect each others' gradients.
add_layers_period=2 # by default, add new layers every 2 iterations.
num_hidden_layers=3
stage=-4
io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time. These don't
splice_width=4 # meaning +- 4 frames on each side for second LDA
randprune=4.0 # speeds up LDA.
alpha=4.0 # relates to preconditioning.
update_period=4 # relates to online preconditioning: says how often we update the subspace.
num_samples_history=2000 # relates to online preconditioning
max_change_per_sample=0.075
precondition_rank_in=20 # relates to online preconditioning
precondition_rank_out=80 # relates to online preconditioning
mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
# specified.)
num_threads=16
parallel_opts="--num-threads 16 --mem 1G"
# by default we use 16 threads; this lets the queue know.
# note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
combine_num_threads=8
combine_parallel_opts="--num-threads 8" # queue options for the "combine" stage.
cleanup=true
egs_dir=
lda_opts=
lda_dim=
egs_opts=
transform_dir= # If supplied, overrides alidir
cmvn_opts= # will be passed to get_lda.sh and get_egs.sh, if supplied.
# only relevant for "raw" features, not lda.
feat_type= # Can be used to force "raw" features.
prior_subset_size=10000 # 10k samples per job, for computing priors. Should be
# more than enough.
align_cmd= # The cmd that is passed to steps/nnet2/align.sh
align_use_gpu= # Passed to use_gpu in steps/nnet2/align.sh [yes/no]
realign_epochs= # List of epochs, the beginning of which realignment is done
num_jobs_align=30 # Number of jobs for realignment
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 4 ]; then
echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>"
echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|15> # Number of epochs of training"
echo " --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
echo " # data, 0.01 for large data"
echo " --final-learning-rate <final-learning-rate|0.004> # Learning rate at end of training, e.g. 0.004 for small"
echo " # data, 0.001 for large data"
echo " --num-hidden-layers <#hidden-layers|2> # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
echo " --add-layers-period <#iters|2> # Number of iterations between adding hidden layers"
echo " --mix-up <#pseudo-gaussians|0> # Can be used to have multiple targets in final output layer,"
echo " # per context-dependent state. Try a number several times #states."
echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net"
echo " # training (will affect results as well as speed; try 8, 16)"
echo " # Note: if you increase this, you may want to also increase"
echo " # the learning rate."
echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results"
echo " # as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... "
echo " --io-opts <opts|\"--max-jobs-run 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O."
echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads"
echo " # should not get too large, e.g. >2k)."
echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per"
echo " # process."
echo " --splice-width <width|4> # Number of frames on each side to append for feature input"
echo " # (note: we splice processed, typically 40-dimensional frames"
echo " --lda-dim <dim|250> # Dimension to reduce spliced features to with LDA"
echo " --realign-epochs <list-of-epochs|\"\"> # A list of space-separated epoch indices the beginning of which"
echo " # realignment is to be done"
echo " --align-cmd (utils/run.pl|utils/queue.pl <queue opts>) # passed to align.sh"
echo " --align-use-gpu (yes/no) # specify is gpu is to be used for realignment"
echo " --num-jobs-align <#njobs|30> # Number of jobs to perform realignment"
echo " --stage <stage|-4> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
data=$1
lang=$2
alidir=$3
dir=$4
if [ ! -z "$realign_epochs" ]; then
[ -z "$align_cmd" ] && echo "$0: realign_epochs specified but align_cmd not specified" && exit 1
[ -z "$align_use_gpu" ] && echo "$0: realign_epochs specified but align_use_gpu not specified" && exit 1
fi
# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# Set some variables.
num_leaves=`tree-info $alidir/tree 2>/dev/null | grep num-pdfs | awk '{print $2}'` || exit 1
[ -z $num_leaves ] && echo "\$num_leaves is unset" && exit 1
[ "$num_leaves" -eq "0" ] && echo "\$num_leaves is 0" && exit 1
nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log
echo $nj > $dir/num_jobs
cp $alidir/tree $dir
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
extra_opts=()
[ ! -z "$cmvn_opts" ] && extra_opts+=(--cmvn-opts "$cmvn_opts")
[ ! -z "$feat_type" ] && extra_opts+=(--feat-type $feat_type)
[ ! -z "$online_ivector_dir" ] && extra_opts+=(--online-ivector-dir $online_ivector_dir)
[ -z "$transform_dir" ] && transform_dir=$alidir
extra_opts+=(--transform-dir $transform_dir)
extra_opts+=(--splice-width $splice_width)
if [ $stage -le -4 ]; then
echo "$0: calling get_lda.sh"
steps/nnet2/get_lda.sh $lda_opts "${extra_opts[@]}" --cmd "$cmd" $data $lang $alidir $dir || exit 1;
fi
# these files will have been written by get_lda.sh
feat_dim=$(cat $dir/feat_dim) || exit 1;
ivector_dim=$(cat $dir/ivector_dim) || exit 1;
lda_dim=$(cat $dir/lda_dim) || exit 1;
if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then
echo "$0: calling get_egs.sh"
steps/nnet2/get_egs.sh $egs_opts "${extra_opts[@]}" \
--samples-per-iter $samples_per_iter \
--num-jobs-nnet $num_jobs_nnet --stage $get_egs_stage \
--cmd "$cmd" $egs_opts --io-opts "$io_opts" \
$data $lang $alidir $dir || exit 1;
fi
if [ -z $egs_dir ]; then
egs_dir=$dir/egs
fi
iters_per_epoch=`cat $egs_dir/iters_per_epoch` || exit 1;
! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \
echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir"
num_jobs_nnet=`cat $egs_dir/num_jobs_nnet` || exit 1;
if ! [ $num_hidden_layers -ge 1 ]; then
echo "Invalid num-hidden-layers $num_hidden_layers"
exit 1
fi
if [ $stage -le -2 ]; then
echo "$0: initializing neural net";
lda_mat=$dir/lda.mat
tot_input_dim=$[$feat_dim+$ivector_dim]
online_preconditioning_opts="alpha=$alpha num-samples-history=$num_samples_history update-period=$update_period rank-in=$precondition_rank_in rank-out=$precondition_rank_out max-change-per-sample=$max_change_per_sample"
stddev=`perl -e "print 1.0/sqrt($pnorm_input_dim);"`
cat >$dir/nnet.config <<EOF
SpliceComponent input-dim=$tot_input_dim left-context=$splice_width right-context=$splice_width const-component-dim=$ivector_dim
FixedAffineComponent matrix=$lda_mat
AffineComponentPreconditionedOnline input-dim=$lda_dim output-dim=$pnorm_input_dim $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim p=$p
NormalizeComponent dim=$pnorm_output_dim
AffineComponentPreconditionedOnline input-dim=$pnorm_output_dim output-dim=$num_leaves $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=0 bias-stddev=0
SoftmaxComponent dim=$num_leaves
EOF
# to hidden.config it will write the part of the config corresponding to a
# single hidden layer; we need this to add new layers.
cat >$dir/hidden.config <<EOF
AffineComponentPreconditionedOnline input-dim=$pnorm_output_dim output-dim=$pnorm_input_dim $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim p=$p
NormalizeComponent dim=$pnorm_output_dim
EOF
$cmd $dir/log/nnet_init.log \
nnet-am-init $alidir/tree $lang/topo "nnet-init $dir/nnet.config -|" \
$dir/0.mdl || exit 1;
fi
if [ $stage -le -1 ]; then
echo "Training transition probabilities and setting priors"
$cmd $dir/log/train_trans.log \
nnet-train-transitions $dir/0.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl \
|| exit 1;
fi
num_iters=$[$num_epochs * $iters_per_epoch];
echo "$0: Will train for $num_epochs epochs = $num_iters iterations"
finish_add_layers_iter=$[$num_hidden_layers * $add_layers_period]
# This is when we decide to mix up from: halfway between when we've finished
# adding the hidden layers and the end of training.
mix_up_iter=$[($num_iters + $finish_add_layers_iter)/2]
if [ $num_threads -eq 1 ]; then
parallel_suffix="-simple" # this enables us to use GPU code if
# we have just one thread.
parallel_train_opts=
if ! cuda-compiled; then
echo "$0: WARNING: you are running with one thread but you have not compiled"
echo " for CUDA. You may be running a setup optimized for GPUs. If you have"
echo " GPUs and have nvcc installed, go to src/ and do ./configure; make"
fi
else
parallel_suffix="-parallel"
parallel_train_opts="--num-threads=$num_threads"
fi
# First work out how many models we want to combine over in the final
# nnet-combine-fast invocation. This equals
# min(max(max_models_combine, iters_per_epoch),
# 2/3 * iters_after_mixup)
num_models_combine=$max_models_combine
if [ $num_models_combine -lt $iters_per_epoch ]; then
num_models_combine=$iters_per_epoch
fi
iters_after_mixup_23=$[(($num_iters-$mix_up_iter-1)*2)/3]
if [ $num_models_combine -gt $iters_after_mixup_23 ]; then
num_models_combine=$iters_after_mixup_23
fi
first_model_combine=$[$num_iters-$num_models_combine+1]
x=0
for realign_epoch in $realign_epochs; do
realign_iter=`perl -e 'print int($ARGV[0] * $ARGV[1]);' $realign_epoch $iters_per_epoch`
realign_this_iter[$realign_iter]=$realign_epoch
done
cur_egs_dir=$egs_dir
while [ $x -lt $num_iters ]; do
if [ ! -z "${realign_this_iter[$x]}" ]; then
prev_egs_dir=$cur_egs_dir
cur_egs_dir=$dir/egs_${realign_this_iter[$x]}
fi
if [ $x -ge 0 ] && [ $stage -le $x ]; then
if [ ! -z "${realign_this_iter[$x]}" ]; then
epoch=${realign_this_iter[$x]}
echo "Getting average posterior for purposes of adjusting the priors."
# Note: this just uses CPUs, using a smallish subset of data.
rm $dir/post.$x.*.vec 2>/dev/null
$cmd JOB=1:$num_jobs_nnet $dir/log/get_post.$x.JOB.log \
nnet-subset-egs --n=$prior_subset_size ark:$prev_egs_dir/egs.JOB.0.ark ark:- \| \
nnet-compute-from-egs "nnet-to-raw-nnet $dir/$x.mdl -|" ark:- ark:- \| \
matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1;
sleep 3; # make sure there is time for $dir/post.$x.*.vec to appear.
$cmd $dir/log/vector_sum.log \
vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1;
rm $dir/post.$x.*.vec;
echo "Re-adjusting priors based on computed posteriors"
$cmd $dir/log/adjust_priors.$x.log \
nnet-adjust-priors $dir/$x.mdl $dir/post.vec $dir/$x.mdl || exit 1;
sleep 2
steps/nnet2/align.sh --nj $num_jobs_align --cmd "$align_cmd" --use-gpu $align_use_gpu \
--transform-dir "$transform_dir" --online-ivector-dir "$online_ivector_dir" \
--iter $x $data $lang $dir $dir/ali_$epoch || exit 1
steps/nnet2/relabel_egs.sh --cmd "$cmd" --iter $x $dir/ali_$epoch \
$prev_egs_dir $cur_egs_dir || exit 1
if $cleanup && [[ $prev_egs_dir =~ $dir/egs* ]]; then
steps/nnet2/remove_egs.sh $prev_egs_dir
fi
fi
# Set off jobs doing some diagnostics, in the background.
# Use the egs dir from the previous iteration for the diagnostics
$cmd $dir/log/compute_prob_valid.$x.log \
nnet-compute-prob $dir/$x.mdl ark:$cur_egs_dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.$x.log \
nnet-compute-prob $dir/$x.mdl ark:$cur_egs_dir/train_diagnostic.egs &
if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then
$cmd $dir/log/progress.$x.log \
nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl \
ark:$cur_egs_dir/train_diagnostic.egs '&&' \
nnet-am-info $dir/$x.mdl &
fi
echo "Training neural net (pass $x)"
if [ $x -gt 0 ] && \
[ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \
[ $[($x-1) % $add_layers_period] -eq 0 ]; then
mdl="nnet-init --srand=$x $dir/hidden.config - | nnet-insert $dir/$x.mdl - - |"
else
mdl=$dir/$x.mdl
fi
if [ $x -eq 0 ] || [ "$mdl" != "$dir/$x.mdl" ]; then
# on iteration zero or when we just added a layer, use a smaller minibatch
# size and just one job: the model-averaging doesn't seem to be helpful
# when the model is changing too fast (i.e. it worsens the objective
# function), and the smaller minibatch size will help to keep
# the update stable.
this_minibatch_size=$[$minibatch_size/2];
do_average=false
else
this_minibatch_size=$minibatch_size
do_average=true
fi
$cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \
ark:$cur_egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \
nnet-train$parallel_suffix $parallel_train_opts \
--minibatch-size=$this_minibatch_size --srand=$x "$mdl" \
ark:- $dir/$[$x+1].JOB.mdl \
|| exit 1;
nnets_list=
for n in `seq 1 $num_jobs_nnet`; do
nnets_list="$nnets_list $dir/$[$x+1].$n.mdl"
done
learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters $initial_learning_rate $final_learning_rate`;
if $do_average; then
# average the output of the different jobs.
$cmd $dir/log/average.$x.log \
nnet-am-average $nnets_list - \| \
nnet-am-copy --learning-rate=$learning_rate - $dir/$[$x+1].mdl || exit 1;
else
# choose the best from the different jobs.
n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) {
$fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn";
undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } }
close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob;
$best_n=$n; } } print "$best_n\n"; ' $num_jobs_nnet $dir/log/train.$x.%d.log) || exit 1;
[ -z "$n" ] && echo "Error getting best model" && exit 1;
$cmd $dir/log/select.$x.log \
nnet-am-copy --learning-rate=$learning_rate $dir/$[$x+1].$n.mdl $dir/$[$x+1].mdl || exit 1;
fi
if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
# mix up.
echo Mixing up from $num_leaves to $mix_up components
$cmd $dir/log/mix_up.$x.log \
nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
$dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1;
fi
rm $nnets_list
[ ! -f $dir/$[$x+1].mdl ] && exit 1;
if [ -f $dir/$[$x-1].mdl ] && $cleanup && \
[ $[($x-1)%100] -ne 0 ] && [ $[$x-1] -lt $first_model_combine ]; then
rm $dir/$[$x-1].mdl
fi
fi
x=$[$x+1]
done
if [ $stage -le $num_iters ]; then
echo "Doing final combination to produce final.mdl"
# Now do combination.
nnets_list=()
# the if..else..fi statement below sets 'nnets_list'.
if [ $max_models_combine -lt $num_models_combine ]; then
# The number of models to combine is too large, e.g. > 20. In this case,
# each argument to nnet-combine-fast will be an average of multiple models.
cur_offset=0 # current offset from first_model_combine.
for n in $(seq $max_models_combine); do
next_offset=$[($n*$num_models_combine)/$max_models_combine]
sub_list=""
for o in $(seq $cur_offset $[$next_offset-1]); do
iter=$[$first_model_combine+$o]
mdl=$dir/$iter.mdl
[ ! -f $mdl ] && echo "Expected $mdl to exist" && exit 1;
sub_list="$sub_list $mdl"
done
nnets_list[$[$n-1]]="nnet-am-average $sub_list - |"
cur_offset=$next_offset
done
else
nnets_list=
for n in $(seq 0 $[num_models_combine-1]); do
iter=$[$first_model_combine+$n]
mdl=$dir/$iter.mdl
[ ! -f $mdl ] && echo "Expected $mdl to exist" && exit 1;
nnets_list[$n]=$mdl
done
fi
# Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
# if there are many models it can give out-of-memory error; set num-threads to 8
# to speed it up (this isn't ideal...)
num_egs=`nnet-copy-egs ark:$cur_egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
mb=$[($num_egs+$combine_num_threads-1)/$combine_num_threads]
[ $mb -gt 512 ] && mb=512
# Setting --initial-model to a large value makes it initialize the combination
# with the average of all the models. It's important not to start with a
# single model, or, due to the invariance to scaling that these nonlinearities
# give us, we get zero diagonal entries in the fisher matrix that
# nnet-combine-fast uses for scaling, which after flooring and inversion, has
# the effect that the initial model chosen gets much higher learning rates
# than the others. This prevents the optimization from working well.
$cmd $combine_parallel_opts $dir/log/combine.log \
nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
--num-threads=$combine_num_threads \
--verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$cur_egs_dir/combine.egs \
$dir/final.mdl || exit 1;
# Normalize stddev for affine or block affine layers that are followed by a
# pnorm layer and then a normalize layer.
$cmd $dir/log/normalize.log \
nnet-normalize-stddev $dir/final.mdl $dir/final.mdl || exit 1;
# Compute the probability of the final, combined model with
# the same subset we used for the previous compute_probs, as the
# different subsets will lead to different probs.
$cmd $dir/log/compute_prob_valid.final.log \
nnet-compute-prob $dir/final.mdl ark:$cur_egs_dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.final.log \
nnet-compute-prob $dir/final.mdl ark:$cur_egs_dir/train_diagnostic.egs &
fi
if [ $stage -le $[$num_iters+1] ]; then
echo "Getting average posterior for purposes of adjusting the priors."
# Note: this just uses CPUs, using a smallish subset of data.
rm $dir/post.$x.*.vec 2>/dev/null
$cmd JOB=1:$num_jobs_nnet $dir/log/get_post.$x.JOB.log \
nnet-subset-egs --n=$prior_subset_size ark:$cur_egs_dir/egs.JOB.0.ark ark:- \| \
nnet-compute-from-egs "nnet-to-raw-nnet $dir/final.mdl -|" ark:- ark:- \| \
matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1;
sleep 3; # make sure there is time for $dir/post.$x.*.vec to appear.
$cmd $dir/log/vector_sum.log \
vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1;
rm $dir/post.$x.*.vec;
echo "Re-adjusting priors based on computed posteriors"
$cmd $dir/log/adjust_priors.final.log \
nnet-adjust-priors $dir/final.mdl $dir/post.$x.vec $dir/final.mdl || exit 1;
fi
if [ ! -f $dir/final.mdl ]; then
echo "$0: $dir/final.mdl does not exist."
# we don't want to clean up if the training didn't succeed.
exit 1;
fi
sleep 2
echo Done
if $cleanup; then
echo Cleaning up data
if [[ $cur_egs_dir =~ $dir/egs* ]]; then
steps/nnet2/remove_egs.sh $cur_egs_dir
fi
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$x.mdl ]; then
# delete all but every 100th model; don't delete the ones which combine to form the final model.
rm $dir/$x.mdl
fi
done
fi