gen_topo5.py
2.33 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python
# Copyright 2012 Johns Hopkins University (author: Daniel Povey)
# Generate a topology file. This allows control of the number of states in the
# non-silence HMMs, and in the silence HMMs. This is a modified version of
# 'utils/gen_topo.pl' that generates a different type of topology, one that we
# believe should be useful in the 'chain' model. Note: right now it doesn't
# have any real options, and it treats silence and nonsilence the same. The
# intention is that you write different versions of this script, or add options,
# if you experiment with it.
from __future__ import print_function
import argparse
parser = argparse.ArgumentParser(description="Usage: steps/nnet3/chain/gen_topo.py "
"<colon-separated-nonsilence-phones> <colon-separated-silence-phones>"
"e.g.: steps/nnet3/chain/gen_topo.pl 4:5:6:7:8:9:10 1:2:3\n",
epilog="See egs/swbd/s5c/local/chain/train_tdnn_a.sh for example of usage.");
parser.add_argument("nonsilence_phones", type=str,
help="List of non-silence phones as integers, separated by colons, e.g. 4:5:6:7:8:9");
parser.add_argument("silence_phones", type=str,
help="List of silence phones as integers, separated by colons, e.g. 1:2:3");
args = parser.parse_args()
silence_phones = [ int(x) for x in args.silence_phones.split(":") ]
nonsilence_phones = [ int(x) for x in args.nonsilence_phones.split(":") ]
all_phones = silence_phones + nonsilence_phones
print("<Topology>")
print("<TopologyEntry>")
print("<ForPhones>")
print(" ".join([str(x) for x in all_phones]))
print("</ForPhones>")
# state 0 is nonemitting
print("<State> 0 <Transition> 1 0.5 <Transition> 2 0.5 </State>")
# state 1 is for when we traverse it in 1 state
print("<State> 1 <PdfClass> 0 <Transition> 4 1.0 </State>")
# state 2 is for when we traverse it in >1 state, for the first state.
print("<State> 2 <PdfClass> 2 <Transition> 3 1.0 </State>")
# state 3 is for the self-loop. Use pdf-class 1 here so that the default
# phone-class clustering (which uses only pdf-class 1 by default) gets only
# stats from longer phones.
print("<State> 3 <PdfClass> 1 <Transition> 3 0.5 <Transition> 4 0.5 </State>")
print("<State> 4 </State>")
print("</TopologyEntry>")
print("</Topology>")