get_egs.sh 24.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
#!/bin/bash

# Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
#
# This script, which will generally be called from other neural-net training
# scripts, extracts the training examples used to train the 'chain' system
# (and also the validation examples used for diagnostics), and puts them in
# separate archives.
#
# This script dumps egs with many frames of labels, controlled by the
# frames_per_eg config variable (default: 25), plus left and right context.
# Because CTC training involves alignment of data, we can't meaningfully train
# frame by frame.   The supervision approach involves the time alignment, though--
# it is just applied in a loose way, where each symbol can appear in the
# frame-range that it was in in the alignment, extended by a certain margin.
#


# Begin configuration section.
cmd=run.pl
frames_per_eg=25   # number of feature frames example (not counting added context).
                   # more->less disk space and less time preparing egs, but more
                   # I/O during training.
frames_overlap_per_eg=0  # number of supervised frames of overlap that we aim for per eg.
                  # can be useful to avoid wasted data if you're using --left-deriv-truncate
                  # and --right-deriv-truncate.
frame_subsampling_factor=3 # frames-per-second of features we train on divided
                           # by frames-per-second at output of chain model
alignment_subsampling_factor=3 # frames-per-second of input alignments divided
                               # by frames-per-second at output of chain model
left_context=4    # amount of left-context per eg (i.e. extra frames of input features
                  # not present in the output supervision).
right_context=4   # amount of right-context per eg.
constrained=true  # 'constrained=true' is the traditional setup; 'constrained=false'
                  # gives you the 'unconstrained' egs creation in which the time
                  # boundaries are not enforced inside chunks.

left_context_initial=-1    # if >=0, left-context for first chunk of an utterance
right_context_final=-1     # if >=0, right-context for last chunk of an utterance
compress=true   # set this to false to disable compression (e.g. if you want to see whether
                # results are affected).

num_utts_subset=300     # number of utterances in validation and training
                        # subsets used for shrinkage and diagnostics.
num_valid_egs_combine=0  # #validation examples for combination weights at the very end.
num_train_egs_combine=1000 # number of train examples for the above.
num_egs_diagnostic=400 # number of frames for "compute_prob" jobs
frames_per_iter=400000 # each iteration of training, see this many frames per
                       # job, measured at the sampling rate of the features
                       # used.  This is just a guideline; it will pick a number
                       # that divides the number of samples in the entire data.

right_tolerance=  # chain right tolerance == max label delay.
left_tolerance=

stage=0
max_jobs_run=15         # This should be set to the maximum number of nnet3-chain-get-egs jobs you are
                        # comfortable to run in parallel; you can increase it if your disk
                        # speed is greater and you have more machines.
max_shuffle_jobs_run=50  # the shuffle jobs now include the nnet3-chain-normalize-egs command,
                         # which is fairly CPU intensive, so we can run quite a few at once
                         # without overloading the disks.
srand=0     # rand seed for nnet3-chain-get-egs, nnet3-chain-copy-egs and nnet3-chain-shuffle-egs
online_ivector_dir=  # can be used if we are including speaker information as iVectors.
cmvn_opts=  # can be used for specifying CMVN options, if feature type is not lda (if lda,
            # it doesn't make sense to use different options than were used as input to the
            # LDA transform).  This is used to turn off CMVN in the online-nnet experiments.
lattice_lm_scale=     # If supplied, the graph/lm weight of the lattices will be
                      # used (with this scale) in generating supervisions
                      # This is 0 by default for conventional supervised training,
                      # but may be close to 1 for the unsupervised part of the data
                      # in semi-supervised training. The optimum is usually
                      # 0.5 for unsupervised data.
lattice_prune_beam=         # If supplied, the lattices will be pruned to this beam,
                            # before being used to get supervisions.
acwt=0.1   # For pruning
deriv_weights_scp=
generate_egs_scp=false

echo "$0 $@"  # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;


if [ $# != 4 ]; then
  echo "Usage: $0 [opts] <data> <chain-dir> <lattice-dir> <egs-dir>"
  echo " e.g.: $0 data/train exp/tri4_nnet exp/tri3_lats exp/tri4_nnet/egs"
  echo ""
  echo "From <chain-dir>, 0.trans_mdl (the transition-model), tree (the tree)"
  echo "and normalization.fst (the normalization FST, derived from the denominator FST)"
  echo "are read."
  echo ""
  echo "Main options (for others, see top of script file)"
  echo "  --config <config-file>                           # config file containing options"
  echo "  --max-jobs-run <max-jobs-run>                    # The maximum number of jobs you want to run in"
  echo "                                                   # parallel (increase this only if you have good disk and"
  echo "                                                   # network speed).  default=6"
  echo "  --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs."
  echo "  --frames-per-iter <#samples;400000>              # Number of frames of data to process per iteration, per"
  echo "                                                   # process."
  echo "  --frame-subsampling-factor <factor;3>            # factor by which num-frames at nnet output is reduced "
  echo "  --frames-per-eg <frames;25>                      # number of supervised frames per eg on disk"
  echo "  --frames-overlap-per-eg <frames;25>              # number of supervised frames of overlap between egs"
  echo "  --left-context <int;4>                           # Number of frames on left side to append for feature input"
  echo "  --right-context <int;4>                          # Number of frames on right side to append for feature input"
  echo "  --left-context-initial <int;-1>                  # If >= 0, left-context for first chunk of an utterance"
  echo "  --right-context-final <int;-1>                   # If >= 0, right-context for last chunk of an utterance"
  echo "  --num-egs-diagnostic <#frames;4000>              # Number of egs used in computing (train,valid) diagnostics"
  echo "  --num-valid-egs-combine <#frames;10000>          # Number of egs used in getting combination weights at the"
  echo "                                                   # very end."
  echo "  --lattice-lm-scale <float>                       # If supplied, the graph/lm weight of the lattices will be "
  echo "                                                   # used (with this scale) in generating supervisions"
  echo "  --lattice-prune-beam <float>                     # If supplied, the lattices will be pruned to this beam, "
  echo "                                                   # before being used to get supervisions."
  echo "  --acwt <float;0.1>                               # Acoustic scale -- affects pruning"
  echo "  --deriv-weights-scp <str>                        # If supplied, adds per-frame weights to the supervision."
  echo "  --generate-egs-scp <bool;false>                  # Generates scp files -- Required if the egs will be "
  echo "                                                   # used for multilingual/multitask training."
  echo "  --stage <stage|0>                                # Used to run a partially-completed training process from somewhere in"
  echo "                                                   # the middle."

  exit 1;
fi

data=$1
chaindir=$2
latdir=$3
dir=$4

# Check some files.
[ ! -z "$online_ivector_dir" ] && \
  extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period"

for f in $data/feats.scp $latdir/lat.1.gz $latdir/final.mdl \
         $chaindir/{0.trans_mdl,tree,normalization.fst} $extra_files; do
  [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done

nj=$(cat $latdir/num_jobs) || exit 1
if [ -f $latdir/per_utt ]; then
  sdata=$data/split${nj}utt
  utils/split_data.sh --per-utt $data $nj
else
  sdata=$data/split$nj
  utils/split_data.sh $data $nj
fi

mkdir -p $dir/log $dir/info

# Get list of validation utterances.
frame_shift=$(utils/data/get_frame_shift.sh $data) || exit 1

if [ -f $data/utt2uniq ]; then
  # Must hold out all augmented versions of the same utterance.
  echo "$0: File $data/utt2uniq exists, so ensuring the hold-out set" \
       "includes all perturbed versions of the same source utterance."
  utils/utt2spk_to_spk2utt.pl $data/utt2uniq 2>/dev/null | \
      utils/shuffle_list.pl 2>/dev/null | \
    awk -v max_utt=$num_utts_subset '{
        for (n=2;n<=NF;n++) print $n;
        printed += NF-1;
        if (printed >= max_utt) nextfile; }' |
    sort > $dir/valid_uttlist
else
  awk '{print $1}' $data/utt2spk | \
    utils/shuffle_list.pl 2>/dev/null | \
    head -$num_utts_subset > $dir/valid_uttlist
fi
len_valid_uttlist=$(wc -l < $dir/valid_uttlist)

awk '{print $1}' $data/utt2spk | \
   utils/filter_scp.pl --exclude $dir/valid_uttlist | \
   utils/shuffle_list.pl 2>/dev/null | \
   head -$num_utts_subset > $dir/train_subset_uttlist
len_trainsub_uttlist=$(wc -l <$dir/train_subset_uttlist)

if [[ $len_valid_uttlist -lt $num_utts_subset ||
      $len_trainsub_uttlist -lt $num_utts_subset ]]; then
  echo "$0: Number of utterances is very small. Please check your data." && exit 1;
fi

echo "$0: Holding out $len_valid_uttlist utterances in validation set and" \
     "$len_trainsub_uttlist in training diagnostic set, out of total" \
     "$(wc -l < $data/utt2spk)."


echo "$0: creating egs.  To ensure they are not deleted later you can do:  touch $dir/.nodelete"

## Set up features.
echo "$0: feature type is raw"
feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |"
valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
echo $cmvn_opts >$dir/cmvn_opts # caution: the top-level nnet training script should copy this to its own dir now.

tree-info $chaindir/tree | grep num-pdfs | awk '{print $2}' > $dir/info/num_pdfs || exit 1

if [ ! -z "$online_ivector_dir" ]; then
  ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1;
  echo $ivector_dim > $dir/info/ivector_dim
  steps/nnet2/get_ivector_id.sh $online_ivector_dir > $dir/info/final.ie.id || exit 1
  ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1;
  ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$ivector_period"
else
  ivector_opts=""
  echo 0 >$dir/info/ivector_dim
fi

if [ $stage -le 1 ]; then
  echo "$0: working out number of frames of training data"
  num_frames=$(steps/nnet2/get_num_frames.sh $data)
  echo $num_frames > $dir/info/num_frames
  echo "$0: working out feature dim"
  feats_one="$(echo $feats | sed s/JOB/1/g)"
  if ! feat_dim=$(feat-to-dim "$feats_one" - 2>/dev/null); then
    echo "Command failed (getting feature dim): feat-to-dim \"$feats_one\""
    exit 1
  fi
  echo $feat_dim > $dir/info/feat_dim
else
  num_frames=$(cat $dir/info/num_frames) || exit 1;
  feat_dim=$(cat $dir/info/feat_dim) || exit 1;
fi

# the + 1 is to round up, not down... we assume it doesn't divide exactly.
num_archives=$[$num_frames/$frames_per_iter+1]

# We may have to first create a smaller number of larger archives, with number
# $num_archives_intermediate, if $num_archives is more than the maximum number
# of open filehandles that the system allows per process (ulimit -n).
# This sometimes gives a misleading answer as GridEngine sometimes changes the
# limit, so we limit it to 512.
max_open_filehandles=$(ulimit -n) || exit 1
[ $max_open_filehandles -gt 512 ] && max_open_filehandles=512
num_archives_intermediate=$num_archives
archives_multiple=1
while [ $[$num_archives_intermediate+4] -gt $max_open_filehandles ]; do
  archives_multiple=$[$archives_multiple+1]
  num_archives_intermediate=$[$num_archives/$archives_multiple] || exit 1;
done
# now make sure num_archives is an exact multiple of archives_multiple.
num_archives=$[$archives_multiple*$num_archives_intermediate] || exit 1;

echo $num_archives >$dir/info/num_archives
echo $frames_per_eg >$dir/info/frames_per_eg
# Work out the number of egs per archive
egs_per_archive=$[$num_frames/($frames_per_eg*$num_archives)] || exit 1;
! [ $egs_per_archive -le $frames_per_iter ] && \
  echo "$0: script error: egs_per_archive=$egs_per_archive not <= frames_per_iter=$frames_per_iter" \
  && exit 1;

echo $egs_per_archive > $dir/info/egs_per_archive

echo "$0: creating $num_archives archives, each with $egs_per_archive egs, with"
echo "$0:   $frames_per_eg labels per example, and (left,right) context = ($left_context,$right_context)"
if [ $left_context_initial -ge 0 ] || [ $right_context_final -ge 0 ]; then
  echo "$0:   ... and (left-context-initial,right-context-final) = ($left_context_initial,$right_context_final)"
fi


if [ -e $dir/storage ]; then
  # Make soft links to storage directories, if distributing this way..  See
  # utils/create_split_dir.pl.
  echo "$0: creating data links"
  utils/create_data_link.pl $(for x in $(seq $num_archives); do echo $dir/cegs.$x.ark; done)
  for x in $(seq $num_archives_intermediate); do
    utils/create_data_link.pl $(for y in $(seq $nj); do echo $dir/cegs_orig.$y.$x.ark; done)
  done
fi

egs_opts="--left-context=$left_context --right-context=$right_context --num-frames=$frames_per_eg --frame-subsampling-factor=$frame_subsampling_factor --compress=$compress"
[ $left_context_initial -ge 0 ] && egs_opts="$egs_opts --left-context-initial=$left_context_initial"
[ $right_context_final -ge 0 ] && egs_opts="$egs_opts --right-context-final=$right_context_final"

[ ! -z "$deriv_weights_scp" ] && egs_opts="$egs_opts --deriv-weights-rspecifier=scp:$deriv_weights_scp"

chain_supervision_all_opts="--lattice-input=true --frame-subsampling-factor=$alignment_subsampling_factor"
[ ! -z $right_tolerance ] && \
  chain_supervision_all_opts="$chain_supervision_all_opts --right-tolerance=$right_tolerance"

[ ! -z $left_tolerance ] && \
  chain_supervision_all_opts="$chain_supervision_all_opts --left-tolerance=$left_tolerance"

if ! $constrained; then
  chain_supervision_all_opts="$chain_supervision_all_opts --convert-to-pdfs=false"
  trans_mdl_opt=--transition-model=$chaindir/0.trans_mdl
else
  trans_mdl_opt=
fi


lats_rspecifier="ark:gunzip -c $latdir/lat.JOB.gz |"
if [ ! -z $lattice_prune_beam ]; then
  if [ "$lattice_prune_beam" == "0" ] || [ "$lattice_prune_beam" == "0.0" ]; then
    lats_rspecifier="$lats_rspecifier lattice-1best --acoustic-scale=$acwt ark:- ark:- |"
  else
    lats_rspecifier="$lats_rspecifier lattice-prune --acoustic-scale=$acwt --beam=$lattice_prune_beam ark:- ark:- |"
  fi
fi

normalization_fst_scale=1.0

if [ ! -z "$lattice_lm_scale" ]; then
  chain_supervision_all_opts="$chain_supervision_all_opts --lm-scale=$lattice_lm_scale"

  normalization_fst_scale=$(perl -e "
  if ($lattice_lm_scale >= 1.0 || $lattice_lm_scale < 0) {
    print STDERR \"Invalid --lattice-lm-scale $lattice_lm_scale\";
    exit(1);
  }
  print (1.0 - $lattice_lm_scale);") || exit 1
fi

echo $left_context > $dir/info/left_context
echo $right_context > $dir/info/right_context
echo $left_context_initial > $dir/info/left_context_initial
echo $right_context_final > $dir/info/right_context_final

if [ $stage -le 2 ]; then
  echo "$0: Getting validation and training subset examples in background."
  rm $dir/.error 2>/dev/null

  (
    $cmd --max-jobs-run 6 JOB=1:$nj $dir/log/lattice_copy.JOB.log \
      lattice-copy --include="cat $dir/valid_uttlist $dir/train_subset_uttlist |" --ignore-missing \
      "$lats_rspecifier" \
      ark,scp:$dir/lat_special.JOB.ark,$dir/lat_special.JOB.scp || exit 1

    for id in $(seq $nj); do cat $dir/lat_special.$id.scp; done > $dir/lat_special.scp

    $cmd $dir/log/create_valid_subset.log \
      utils/filter_scp.pl $dir/valid_uttlist $dir/lat_special.scp \| \
      lattice-align-phones --replace-output-symbols=true $latdir/final.mdl scp:- ark:- \| \
      chain-get-supervision $chain_supervision_all_opts $chaindir/tree $chaindir/0.trans_mdl \
        ark:- ark:- \| \
      nnet3-chain-get-egs $ivector_opts --srand=$srand \
         $egs_opts --normalization-fst-scale=$normalization_fst_scale \
         $trans_mdl_opt $chaindir/normalization.fst \
        "$valid_feats" ark,s,cs:- "ark:$dir/valid_all.cegs" || exit 1
    $cmd $dir/log/create_train_subset.log \
      utils/filter_scp.pl $dir/train_subset_uttlist $dir/lat_special.scp \| \
      lattice-align-phones --replace-output-symbols=true $latdir/final.mdl scp:- ark:- \| \
      chain-get-supervision $chain_supervision_all_opts \
        $chaindir/tree $chaindir/0.trans_mdl ark:- ark:- \| \
      nnet3-chain-get-egs $ivector_opts --srand=$srand \
        $egs_opts --normalization-fst-scale=$normalization_fst_scale \
        $trans_mdl_opt $chaindir/normalization.fst \
        "$train_subset_feats" ark,s,cs:- "ark:$dir/train_subset_all.cegs" || exit 1
    sleep 5  # wait for file system to sync.
    echo "$0: Getting subsets of validation examples for diagnostics and combination."
    if $generate_egs_scp; then
      valid_diagnostic_output="ark,scp:$dir/valid_diagnostic.cegs,$dir/valid_diagnostic.scp"
      train_diagnostic_output="ark,scp:$dir/train_diagnostic.cegs,$dir/train_diagnostic.scp"
    else
      valid_diagnostic_output="ark:$dir/valid_diagnostic.cegs"
      train_diagnostic_output="ark:$dir/train_diagnostic.cegs"
    fi
    $cmd $dir/log/create_valid_subset_combine.log \
      nnet3-chain-subset-egs --n=$num_valid_egs_combine ark:$dir/valid_all.cegs \
      ark:$dir/valid_combine.cegs || exit 1
    $cmd $dir/log/create_valid_subset_diagnostic.log \
      nnet3-chain-subset-egs --n=$num_egs_diagnostic ark:$dir/valid_all.cegs \
      $valid_diagnostic_output || exit 1

    $cmd $dir/log/create_train_subset_combine.log \
      nnet3-chain-subset-egs --n=$num_train_egs_combine ark:$dir/train_subset_all.cegs \
      ark:$dir/train_combine.cegs || exit 1
    $cmd $dir/log/create_train_subset_diagnostic.log \
      nnet3-chain-subset-egs --n=$num_egs_diagnostic ark:$dir/train_subset_all.cegs \
      $train_diagnostic_output || exit 1
    sleep 5  # wait for file system to sync.
    if $generate_egs_scp; then
      cat $dir/valid_combine.cegs $dir/train_combine.cegs | \
        nnet3-chain-copy-egs ark:- ark,scp:$dir/combine.cegs,$dir/combine.scp
    else
      cat $dir/valid_combine.cegs $dir/train_combine.cegs > $dir/combine.cegs
    fi

    for f in $dir/{combine,train_diagnostic,valid_diagnostic}.cegs; do
      [ ! -s $f ] && echo "$0: No examples in file $f" && exit 1;
    done
    rm $dir/valid_all.cegs $dir/train_subset_all.cegs $dir/{train,valid}_combine.cegs
  ) || touch $dir/.error &
fi

if [ $stage -le 4 ]; then
  # create cegs_orig.*.*.ark; the first index goes to $nj,
  # the second to $num_archives_intermediate.

  egs_list=
  for n in $(seq $num_archives_intermediate); do
    egs_list="$egs_list ark:$dir/cegs_orig.JOB.$n.ark"
  done
  echo "$0: Generating training examples on disk"

  # The examples will go round-robin to egs_list.  Note: we omit the
  # 'normalization.fst' argument while creating temporary egs: the phase of egs
  # preparation that involves the normalization FST is quite CPU-intensive and
  # it's more convenient to do it later, in the 'shuffle' stage.  Otherwise to
  # make it efficient we need to use a large 'nj', like 40, and in that case
  # there can be too many small files to deal with, because the total number of
  # files is the product of 'nj' by 'num_archives_intermediate', which might be
  # quite large.

  $cmd --max-jobs-run $max_jobs_run JOB=1:$nj $dir/log/get_egs.JOB.log \
    lattice-align-phones --replace-output-symbols=true $latdir/final.mdl \
      "$lats_rspecifier" ark:- \| \
    chain-get-supervision $chain_supervision_all_opts \
      $chaindir/tree $chaindir/0.trans_mdl ark:- ark:- \| \
    nnet3-chain-get-egs $ivector_opts --srand=\$[JOB+$srand] $egs_opts \
      --num-frames-overlap=$frames_overlap_per_eg $trans_mdl_opt \
     "$feats" ark,s,cs:- ark:- \| \
    nnet3-chain-copy-egs --random=true --srand=\$[JOB+$srand] ark:- $egs_list || exit 1;
fi

if [ -f $dir/.error ]; then
  echo "$0: Error detected while creating train/valid egs" && exit 1
fi

if [ $stage -le 5 ]; then
  echo "$0: recombining and shuffling order of archives on disk"
  # combine all the "egs_orig.*.JOB.scp" (over the $nj splits of the data) and
  # shuffle the order, writing to the egs.JOB.ark

  # the input is a concatenation over the input jobs.
  egs_list=
  for n in $(seq $nj); do
    egs_list="$egs_list $dir/cegs_orig.$n.JOB.ark"
  done

  if [ $archives_multiple == 1 ]; then # normal case.
    if $generate_egs_scp; then
      output_archive="ark,scp:$dir/cegs.JOB.ark,$dir/cegs.JOB.scp"
    else
      output_archive="ark:$dir/cegs.JOB.ark"
    fi
    $cmd --max-jobs-run $max_shuffle_jobs_run --mem 8G \
      JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \
      nnet3-chain-normalize-egs --normalization-fst-scale=$normalization_fst_scale \
        $chaindir/normalization.fst "ark:cat $egs_list|" ark:- \| \
      nnet3-chain-shuffle-egs --srand=\$[JOB+$srand] ark:- $output_archive || exit 1;

    if $generate_egs_scp; then
      #concatenate cegs.JOB.scp in single cegs.scp
      for j in $(seq $num_archives_intermediate); do
        cat $dir/cegs.$j.scp || exit 1;
      done > $dir/cegs.scp || exit 1;
      for f in $dir/cegs.*.scp; do rm $f; done
    fi
  else
    # we need to shuffle the 'intermediate archives' and then split into the
    # final archives.  we create soft links to manage this splitting, because
    # otherwise managing the output names is quite difficult (and we don't want
    # to submit separate queue jobs for each intermediate archive, because then
    # the --max-jobs-run option is hard to enforce).
    if $generate_egs_scp; then
      output_archives="$(for y in $(seq $archives_multiple); do echo ark,scp:$dir/cegs.JOB.$y.ark,$dir/cegs.JOB.$y.scp; done)"
    else
      output_archives="$(for y in $(seq $archives_multiple); do echo ark:$dir/cegs.JOB.$y.ark; done)"
    fi
    for x in $(seq $num_archives_intermediate); do
      for y in $(seq $archives_multiple); do
        archive_index=$[($x-1)*$archives_multiple+$y]
        # egs.intermediate_archive.{1,2,...}.ark will point to egs.archive.ark
        ln -sf cegs.$archive_index.ark $dir/cegs.$x.$y.ark || exit 1
      done
    done
    $cmd --max-jobs-run $max_shuffle_jobs_run --mem 8G \
      JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \
      nnet3-chain-normalize-egs --normalization-fst-scale=$normalization_fst_scale \
        $chaindir/normalization.fst "ark:cat $egs_list|" ark:- \| \
      nnet3-chain-shuffle-egs --srand=\$[JOB+$srand] ark:- ark:- \| \
      nnet3-chain-copy-egs ark:- $output_archives || exit 1;

    if $generate_egs_scp; then
      #concatenate cegs.JOB.scp in single cegs.scp
      rm -rf $dir/cegs.scp
      for j in $(seq $num_archives_intermediate); do
        for y in $(seq $archives_multiple); do
          cat $dir/cegs.$j.$y.scp || exit 1;
        done
      done > $dir/cegs.scp || exit 1;
      for f in $dir/cegs.*.*.scp; do rm $f; done
    fi
  fi
fi

wait
if [ -f $dir/.error ]; then
  echo "$0: Error detected while creating train/valid egs" && exit 1
fi

if [ $stage -le 6 ]; then
  echo "$0: Removing temporary archives, alignments and lattices"
  (
    cd $dir
    for f in $(ls -l . | grep 'cegs_orig' | awk '{ X=NF-1; Y=NF-2; if ($X == "->")  print $Y, $NF; }'); do rm $f; done
    # the next statement removes them if we weren't using the soft links to a
    # 'storage' directory.
    rm cegs_orig.*.ark 2>/dev/null
  )
  if ! $generate_egs_scp && [ $archives_multiple -gt 1 ]; then
    # there are some extra soft links that we should delete.
    for f in $dir/cegs.*.*.ark; do rm $f; done
  fi
  rm $dir/ali.{ark,scp} 2>/dev/null
  rm $dir/lat_special.*.{ark,scp} 2>/dev/null
fi

echo "$0: Finished preparing training examples"