train.py 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
#!/usr/bin/env python

# Copyright 2016    Vijayaditya Peddinti.
#           2016    Vimal Manohar
# Apache 2.0.

""" This script is based on steps/nnet3/chain/train.sh
"""
from __future__ import division
from __future__ import print_function

import argparse
import logging
import os
import pprint
import shutil
import sys
import traceback

sys.path.insert(0, 'steps')
import libs.nnet3.train.common as common_train_lib
import libs.common as common_lib
import libs.nnet3.train.chain_objf.acoustic_model as chain_lib
import libs.nnet3.report.log_parse as nnet3_log_parse


logger = logging.getLogger('libs')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - "
                              "%(funcName)s - %(levelname)s ] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info('Starting chain model trainer (train.py)')


def get_args():
    """ Get args from stdin.

    We add compulsary arguments as named arguments for readability

    The common options are defined in the object
    libs.nnet3.train.common.CommonParser.parser.
    See steps/libs/nnet3/train/common.py
    """

    parser = argparse.ArgumentParser(
        description="""Trains RNN and DNN acoustic models using the 'chain'
        objective function.""",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        conflict_handler='resolve',
        parents=[common_train_lib.CommonParser().parser])

    # egs extraction options
    parser.add_argument("--egs.chunk-width", type=str, dest='chunk_width',
                        default="20",
                        help="""Number of frames per chunk in the examples
                        used to train the RNN.   Caution: if you double this you
                        should halve --trainer.samples-per-iter.  May be
                        a comma-separated list of alternatives: first width
                        is the 'principal' chunk-width, used preferentially""")

    # chain options
    parser.add_argument("--chain.lm-opts", type=str, dest='lm_opts',
                        default=None, action=common_lib.NullstrToNoneAction,
                        help="options to be be passed to chain-est-phone-lm")
    parser.add_argument("--chain.l2-regularize", type=float,
                        dest='l2_regularize', default=0.0,
                        help="""Weight of regularization function which is the
                        l2-norm of the output of the network. It should be used
                        without the log-softmax layer for the outputs.  As
                        l2-norm of the log-softmax outputs can dominate the
                        objective function.""")
    parser.add_argument("--chain.xent-regularize", type=float,
                        dest='xent_regularize', default=0.0,
                        help="Weight of regularization function which is the "
                        "cross-entropy cost the outputs.")
    parser.add_argument("--chain.right-tolerance", type=int,
                        dest='right_tolerance', default=5, help="")
    parser.add_argument("--chain.left-tolerance", type=int,
                        dest='left_tolerance', default=5, help="")
    parser.add_argument("--chain.leaky-hmm-coefficient", type=float,
                        dest='leaky_hmm_coefficient', default=0.00001,
                        help="")
    parser.add_argument("--chain.apply-deriv-weights", type=str,
                        dest='apply_deriv_weights', default=True,
                        action=common_lib.StrToBoolAction,
                        choices=["true", "false"],
                        help="")
    parser.add_argument("--chain.frame-subsampling-factor", type=int,
                        dest='frame_subsampling_factor', default=3,
                        help="ratio of frames-per-second of features we "
                        "train on, to chain model's output")
    parser.add_argument("--chain.alignment-subsampling-factor", type=int,
                        dest='alignment_subsampling_factor',
                        default=3,
                        help="ratio of frames-per-second of input "
                        "alignments to chain model's output")
    parser.add_argument("--chain.left-deriv-truncate", type=int,
                        dest='left_deriv_truncate',
                        default=None,
                        help="Deprecated. Kept for back compatibility")

    # trainer options
    parser.add_argument("--trainer.input-model", type=str,
                        dest='input_model', default=None,
                        action=common_lib.NullstrToNoneAction,
                        help="If specified, this model is used as initial "
                             "'raw' model (0.raw in the script) instead of "
                             "initializing the model from the xconfig. "
                             "Also configs dir is not expected to exist "
                             "and left/right context is computed from this "
                             "model.")
    parser.add_argument("--trainer.num-epochs", type=float, dest='num_epochs',
                        default=10.0,
                        help="Number of epochs to train the model")
    parser.add_argument("--trainer.frames-per-iter", type=int,
                        dest='frames_per_iter', default=800000,
                        help="""Each iteration of training, see this many
                        [input] frames per job.  This option is passed to
                        get_egs.sh.  Aim for about a minute of training
                        time""")

    parser.add_argument("--trainer.num-chunk-per-minibatch", type=str,
                        dest='num_chunk_per_minibatch', default='128',
                        help="""Number of sequences to be processed in
                        parallel every minibatch.  May be a more general
                        rule as accepted by the --minibatch-size option of
                        nnet3-merge-egs; run that program without args to see
                        the format.""")

    # Parameters for the optimization
    parser.add_argument("--trainer.optimization.initial-effective-lrate",
                        type=float, dest='initial_effective_lrate',
                        default=0.0002,
                        help="Learning rate used during the initial iteration")
    parser.add_argument("--trainer.optimization.final-effective-lrate",
                        type=float, dest='final_effective_lrate',
                        default=0.00002,
                        help="Learning rate used during the final iteration")
    parser.add_argument("--trainer.optimization.shrink-value", type=float,
                        dest='shrink_value', default=1.0,
                        help="""Scaling factor used for scaling the parameter
                        matrices when the derivative averages are below the
                        shrink-threshold at the non-linearities.  E.g. 0.99.
                        Only applicable when the neural net contains sigmoid or
                        tanh units.""")
    parser.add_argument("--trainer.optimization.shrink-saturation-threshold",
                        type=float,
                        dest='shrink_saturation_threshold', default=0.40,
                        help="""Threshold that controls when we apply the
                        'shrinkage' (i.e. scaling by shrink-value).  If the
                        saturation of the sigmoid and tanh nonlinearities in
                        the neural net (as measured by
                        steps/nnet3/get_saturation.pl) exceeds this threshold
                        we scale the parameter matrices with the
                        shrink-value.""")
    # RNN-specific training options
    parser.add_argument("--trainer.deriv-truncate-margin", type=int,
                        dest='deriv_truncate_margin', default=None,
                        help="""(Relevant only for recurrent models). If
                        specified, gives the margin (in input frames) around
                        the 'required' part of each chunk that the derivatives
                        are backpropagated to. If unset, the derivatives are
                        backpropagated all the way to the boundaries of the
                        input data. E.g. 8 is a reasonable setting. Note: the
                        'required' part of the chunk is defined by the model's
                        {left,right}-context.""")

    # General options
    parser.add_argument("--feat-dir", type=str, required=True,
                        help="Directory with features used for training "
                        "the neural network.")
    parser.add_argument("--tree-dir", type=str, required=True,
                        help="""Directory containing the tree to use for this
                        model (we also expect final.mdl and ali.*.gz in that
                        directory""")
    parser.add_argument("--lat-dir", type=str, required=True,
                        help="Directory with numerator lattices "
                        "used for training the neural network.")
    parser.add_argument("--dir", type=str, required=True,
                        help="Directory to store the models and "
                        "all other files.")

    print(' '.join(sys.argv))
    print(sys.argv)

    args = parser.parse_args()

    [args, run_opts] = process_args(args)

    return [args, run_opts]


def process_args(args):
    """ Process the options got from get_args()
    """

    if not common_train_lib.validate_chunk_width(args.chunk_width):
        raise Exception("--egs.chunk-width has an invalid value")

    if not common_train_lib.validate_minibatch_size_str(args.num_chunk_per_minibatch):
        raise Exception("--trainer.num-chunk-per-minibatch has an invalid value")

    if args.chunk_left_context < 0:
        raise Exception("--egs.chunk-left-context should be non-negative")

    if args.chunk_right_context < 0:
        raise Exception("--egs.chunk-right-context should be non-negative")

    if args.left_deriv_truncate is not None:
        args.deriv_truncate_margin = -args.left_deriv_truncate
        logger.warning(
            "--chain.left-deriv-truncate (deprecated) is set by user, and "
            "--trainer.deriv-truncate-margin is set to negative of that "
            "value={0}. We recommend using the option "
            "--trainer.deriv-truncate-margin.".format(
                args.deriv_truncate_margin))

    if (not os.path.exists(args.dir)):
        raise Exception("Directory specified with --dir={0} "
                        "does not exist.".format(args.dir))
    if (not os.path.exists(args.dir + "/configs") and
        (args.input_model is None or not os.path.exists(args.input_model))):
        raise Exception("Either --trainer.input-model option should be supplied, "
                        "and exist; or the {0}/configs directory should exist."
                        "".format(args.dir))

    # set the options corresponding to args.use_gpu
    run_opts = common_train_lib.RunOpts()
    if args.use_gpu in ["true", "false"]:
        args.use_gpu = ("yes" if args.use_gpu == "true" else "no")
    if args.use_gpu in ["yes", "wait"]:
        if not common_lib.check_if_cuda_compiled():
            logger.warning(
                """You are running with one thread but you have not compiled
                   for CUDA.  You may be running a setup optimized for GPUs.
                   If you have GPUs and have nvcc installed, go to src/ and do
                   ./configure; make""")

        run_opts.train_queue_opt = "--gpu 1"
        run_opts.parallel_train_opts = "--use-gpu={}".format(args.use_gpu)
        run_opts.combine_queue_opt = "--gpu 1"
        run_opts.combine_gpu_opt = "--use-gpu={}".format(args.use_gpu)

    else:
        logger.warning("Without using a GPU this will be very slow. "
                       "nnet3 does not yet support multiple threads.")

        run_opts.train_queue_opt = ""
        run_opts.parallel_train_opts = "--use-gpu=no"
        run_opts.combine_queue_opt = ""
        run_opts.combine_gpu_opt = "--use-gpu=no"

    run_opts.command = args.command
    run_opts.egs_command = (args.egs_command
                            if args.egs_command is not None else
                            args.command)

    return [args, run_opts]


def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Check files
    chain_lib.check_for_required_files(args.feat_dir, args.tree_dir,
                                       args.lat_dir if args.egs_dir is None
                                       else None)

    # Copy phones.txt from tree-dir to dir. Later, steps/nnet3/decode.sh will
    # use it to check compatibility between training and decoding phone-sets.
    shutil.copy('{0}/phones.txt'.format(args.tree_dir), args.dir)

    # Set some variables.
    num_jobs = common_lib.get_number_of_jobs(args.tree_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.execute_command("utils/split_data.sh {0} {1}"
                               "".format(args.feat_dir, num_jobs))
    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    if args.input_model is None:
        config_dir = '{0}/configs'.format(args.dir)
        var_file = '{0}/vars'.format(config_dir)

        variables = common_train_lib.parse_generic_config_vars_file(var_file)
    else:
        # If args.input_model is specified, the model left and right contexts
        # are computed using input_model.
        variables = common_train_lib.get_input_model_info(args.input_model)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial + model_left_context if
                            args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context if
                           args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.
    if (args.stage <= -6):
        logger.info("Creating phone language-model")
        chain_lib.create_phone_lm(args.dir, args.tree_dir, run_opts,
                                  lm_opts=args.lm_opts)

    if (args.stage <= -5):
        logger.info("Creating denominator FST")
        shutil.copy('{0}/tree'.format(args.tree_dir), args.dir)
        chain_lib.create_denominator_fst(args.dir, args.tree_dir, run_opts)

    if ((args.stage <= -4) and
            os.path.exists("{0}/configs/init.config".format(args.dir))
            and (args.input_model is None)):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
            nnet3-init --srand=-2 {dir}/configs/init.config \
            {dir}/init.raw""".format(command=run_opts.command,
                                     dir=args.dir))

    egs_left_context = left_context + args.frame_subsampling_factor // 2
    egs_right_context = right_context + args.frame_subsampling_factor // 2
    # note: the '+ args.frame_subsampling_factor / 2' is to allow for the
    # fact that we'll be shifting the data slightly during training to give
    # variety to the training data.
    egs_left_context_initial = (left_context_initial +
                                args.frame_subsampling_factor // 2 if
                                left_context_initial >= 0 else -1)
    egs_right_context_final = (right_context_final +
                               args.frame_subsampling_factor // 2 if
                               right_context_final >= 0 else -1)

    default_egs_dir = '{0}/egs'.format(args.dir)

    if (args.egs_dir is not None) and (args.cmvn_opts != "--norm-means=false --norm-vars=false"):
        logger.warning("the --feat.cmvn-opts option has no effect because we are not dumping egs")

    if (args.egs_dir is not None) and (args.frames_per_iter != 800000):
        logger.warning("the --trainer.frames-per-iter option has no effect because we are not dumping egs")

    if ((args.stage <= -3) and args.egs_dir is None):
        logger.info("Generating egs")
        if (not os.path.exists("{0}/den.fst".format(args.dir)) or
                not os.path.exists("{0}/normalization.fst".format(args.dir)) or
                not os.path.exists("{0}/tree".format(args.dir))):
            raise Exception("Chain egs generation expects {0}/den.fst, "
                            "{0}/normalization.fst and {0}/tree "
                            "to exist.".format(args.dir))
        # this is where get_egs.sh is called.
        chain_lib.generate_chain_egs(
            dir=args.dir, data=args.feat_dir,
            lat_dir=args.lat_dir, egs_dir=default_egs_dir,
            left_context=egs_left_context,
            right_context=egs_right_context,
            left_context_initial=egs_left_context_initial,
            right_context_final=egs_right_context_final,
            run_opts=run_opts,
            left_tolerance=args.left_tolerance,
            right_tolerance=args.right_tolerance,
            frame_subsampling_factor=args.frame_subsampling_factor,
            alignment_subsampling_factor=args.alignment_subsampling_factor,
            frames_per_eg_str=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            frames_per_iter=args.frames_per_iter,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
         common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                         ivector_dim, ivector_id,
                                         egs_left_context, egs_right_context,
                                         egs_left_context_initial,
                                         egs_right_context_final))
    assert(args.chunk_width == frames_per_eg_str)
    num_archives_expanded = num_archives * args.frame_subsampling_factor

    if (args.num_jobs_final > num_archives_expanded):
        raise Exception('num_jobs_final cannot exceed the '
                        'expanded number of archives')

    # copy the properties of the egs to dir for
    # use during decoding
    logger.info("Copying the properties from {0} to {1}".format(egs_dir, args.dir))
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if not os.path.exists('{0}/valid_diagnostic.cegs'.format(egs_dir)):
        if (not os.path.exists('{0}/valid_diagnostic.scp'.format(egs_dir))):
            raise Exception('Neither {0}/valid_diagnostic.cegs nor '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects one of them.'.format(egs_dir))
        use_multitask_egs = True
    else:
        use_multitask_egs = False

    if ((args.stage <= -2) and (os.path.exists(args.dir+"/configs/init.config"))
            and (args.input_model is None)):
        logger.info('Computing the preconditioning matrix for input features')

        chain_lib.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune,
            use_multitask_egs=use_multitask_egs)

    if (args.stage <= -1):
        logger.info("Preparing the initial acoustic model.")
        chain_lib.prepare_initial_acoustic_model(args.dir, run_opts,
                                                 input_model=args.input_model)

    with open("{0}/frame_subsampling_factor".format(args.dir), "w") as f:
        f.write(str(args.frame_subsampling_factor))

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives_expanded)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 // (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs,
            num_archives_expanded, args.max_models_combine,
            args.num_jobs_final)
    else:
        models_to_combine = None

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return

        current_num_jobs = common_train_lib.get_current_num_jobs(
            iter, num_iters,
            args.num_jobs_initial, args.num_jobs_step, args.num_jobs_final)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.mdl".format(dir=args.dir, iter=iter)

            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))
            if args.shrink_value < shrinkage_value:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.should_do_shrinkage(
                                       iter, model_file,
                                       args.shrink_saturation_threshold)
                                   else shrinkage_value)

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs
                     / num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}   Jobs: {2}   "
                        "Epoch: {3:0.2f}/{4:0.1f} ({5:0.1f}% complete)   "
                        "lr: {6:0.6f}   {7}".format(iter, num_iters - 1,
                                                    current_num_jobs,
                                                    epoch, args.num_epochs,
                                                    percent,
                                                    lrate, shrink_info_str))

            chain_lib.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                shrinkage_value=shrinkage_value,
                num_chunk_per_minibatch_str=args.num_chunk_per_minibatch,
                apply_deriv_weights=args.apply_deriv_weights,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                frame_subsampling_factor=args.frame_subsampling_factor,
                run_opts=run_opts,
                backstitch_training_scale=args.backstitch_training_scale,
                backstitch_training_interval=args.backstitch_training_interval,
                use_multitask_egs=use_multitask_egs)

            if args.cleanup:
                # do a clean up everything but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(
                            args.dir, "log-probability"))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.mdl")
            chain_lib.combine_models(
                dir=args.dir, num_iters=num_iters,
                models_to_combine=models_to_combine,
                num_chunk_per_minibatch_str=args.num_chunk_per_minibatch,
                egs_dir=egs_dir,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                run_opts=run_opts,
                max_objective_evaluations=args.max_objective_evaluations,
                use_multitask_egs=use_multitask_egs)
        else:
            logger.info("Copying the last-numbered model to final.mdl")
            common_lib.force_symlink("{0}.mdl".format(num_iters),
                                     "{0}/final.mdl".format(args.dir))
            chain_lib.compute_train_cv_probabilities(
                dir=args.dir, iter=num_iters, egs_dir=egs_dir,
                l2_regularize=args.l2_regularize, xent_regularize=args.xent_regularize,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                run_opts=run_opts,
                use_multitask_egs=use_multitask_egs)
            common_lib.force_symlink("compute_prob_valid.{iter}.log"
                                     "".format(iter=num_iters),
                                     "{dir}/log/compute_prob_valid.final.log".format(
                                         dir=args.dir))

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        # leave the last-two-numbered models, for diagnostic reasons.
        common_train_lib.clean_nnet_dir(
            args.dir, num_iters - 1, egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(
        args.dir, "log-probability")
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/chain_dir_info.pl "
                               "{0}".format(args.dir))


def main():
    [args, run_opts] = get_args()
    try:
        train(args, run_opts)
        common_lib.wait_for_background_commands()
    except BaseException as e:
        # look for BaseException so we catch KeyboardInterrupt, which is
        # what we get when a background thread dies.
        if args.email is not None:
            message = ("Training session for experiment {dir} "
                       "died due to an error.".format(dir=args.dir))
            common_lib.send_mail(message, message, args.email)
        if not isinstance(e, KeyboardInterrupt):
            traceback.print_exc()
        sys.exit(1)

if __name__ == "__main__":
    main()