train_tdnn.sh
28.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
#!/bin/bash
# THIS SCRIPT IS DEPRECATED, see ./train.py
# note, TDNN is the same as what we used to call multisplice.
# This version of the script, nnet3/chain/train_tdnn.sh, is for 'chain' systems.
# Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey).
# 2013 Xiaohui Zhang
# 2013 Guoguo Chen
# 2014 Vimal Manohar
# 2014 Vijayaditya Peddinti
# Apache 2.0.
# Begin configuration section.
cmd=run.pl
num_epochs=10 # Number of epochs of training;
# the number of iterations is worked out from this.
# Be careful with this: we actually go over the data
# num-epochs * frame-subsampling-factor times, due to
# using different data-shifts.
apply_deriv_weights=true
initial_effective_lrate=0.0002
final_effective_lrate=0.00002
extra_left_context=0 # actually for recurrent setups.
pnorm_input_dim=3000
pnorm_output_dim=300
relu_dim= # you can use this to make it use ReLU's instead of p-norms.
jesus_opts= # opts to steps/nnet3/make_jesus_configs.py.
# If nonempty, assumes you want to use the jesus nonlinearity,
# and you should supply various options to that script in
# this string.
rand_prune=4.0 # Relates to a speedup we do for LDA.
minibatch_size=512 # This default is suitable for GPU-based training.
# Set it to 128 for multi-threaded CPU-based training.
lm_opts= # options to chain-est-phone-lm
l2_regularize=0.0
leaky_hmm_coefficient=0.00001
xent_regularize=0.0
frames_per_iter=800000 # each iteration of training, see this many [input]
# frames per job. This option is passed to get_egs.sh.
# Aim for about a minute of training time
right_tolerance=5 # tolerance at the same frame-rate as the alignment directory.
left_tolerance=5 # tolerance at the same frame-rate as the alignment directory.
num_jobs_initial=1 # Number of neural net jobs to run in parallel at the start of training
num_jobs_final=8 # Number of neural net jobs to run in parallel at the end of training
frame_subsampling_factor=3 # ratio of frames-per-second of features we train
# on, to chain model's output
alignment_subsampling_factor=3 # ratio of frames-per-second of input alignments
# to chain model's output
get_egs_stage=0 # can be used for rerunning after partial
online_ivector_dir=
max_param_change=2.0
remove_egs=true # set to false to disable removing egs after training is done.
max_models_combine=20 # The "max_models_combine" is the maximum number of models we give
# to the final 'combine' stage, but these models will themselves be averages of
# iteration-number ranges.
ngram_order=3
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
# (the point of this is to get data in different minibatches on different iterations,
# since in the preconditioning method, 2 samples in the same minibatch can
# affect each others' gradients.
final_layer_normalize_target=1.0 # you can set this to less than one if you
# think the final layer is learning too fast
# compared with the other layers.
add_layers_period=2 # by default, add new layers every 2 iterations.
stage=-7
exit_stage=-100 # you can set this to terminate the training early. Exits before running this stage
# count space-separated fields in splice_indexes to get num-hidden-layers.
splice_indexes="-4,-3,-2,-1,0,1,2,3,4 0 -2,2 0 -4,4 0"
# Format : layer<hidden_layer>/<frame_indices>....layer<hidden_layer>/<frame_indices> "
# note: hidden layers which are composed of one or more components,
# so hidden layer indexing is different from component count
randprune=4.0 # speeds up LDA.
use_gpu=true # if true, we run on GPU.
cleanup=true
egs_dir=
max_lda_jobs=20 # use no more than 20 jobs for the LDA accumulation.
lda_opts=
egs_opts=
transform_dir= # If supplied, this dir used instead of latdir to find transforms.
cmvn_opts= # will be passed to get_lda.sh and get_egs.sh, if supplied.
# only relevant for "raw" features, not lda.
frames_per_eg=25 # number of frames of output per chunk. To be passed on to get_egs.sh.
left_deriv_truncate= # number of time-steps to avoid using the deriv of, on the left.
right_deriv_truncate= # number of time-steps to avoid using the deriv of, on the right.
# End configuration section.
trap 'for pid in $(jobs -pr); do kill -TERM $pid; done' INT QUIT TERM
echo "$0: THIS SCRIPT IS DEPRECATED"
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 4 ]; then
echo "Usage: $0 [opts] <data> <tree-dir> <phone-lattice-dir> <exp-dir>"
echo " e.g.: $0 data/train exp/chain/tri3b_tree exp/tri3_latali exp/chain/tdnn_a"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|15> # Number of epochs of training"
echo " --initial-effective-lrate <lrate|0.02> # effective learning rate at start of training."
echo " --final-effective-lrate <lrate|0.004> # effective learning rate at end of training."
echo " # data, 0.00025 for large data"
echo " --num-hidden-layers <#hidden-layers|2> # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
echo " --add-layers-period <#iters|2> # Number of iterations between adding hidden layers"
echo " --num-jobs-initial <num-jobs|1> # Number of parallel jobs to use for neural net training, at the start."
echo " --num-jobs-final <num-jobs|8> # Number of parallel jobs to use for neural net training, at the end"
echo " --num-threads <num-threads|16> # Number of parallel threads per job, for CPU-based training (will affect"
echo " # results as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... note, you might have to reduce --mem"
echo " # versus your defaults, because it gets multiplied by the --num-threads argument."
echo " --io-opts <opts|\"--max-jobs-run 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O."
echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads"
echo " # should not get too large, e.g. >2k)."
echo " --frames-per-iter <#frames|400000> # Number of frames of data to process per iteration, per"
echo " # process."
echo " --splice-indexes <string|layer0/-4:-3:-2:-1:0:1:2:3:4> "
echo " # Frame indices used for each splice layer."
echo " # Format : layer<hidden_layer_index>/<frame_indices>....layer<hidden_layer>/<frame_indices> "
echo " # (note: we splice processed, typically 40-dimensional frames"
echo " --lda-dim <dim|''> # Dimension to reduce spliced features to with LDA"
echo " --stage <stage|-4> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
data=$1
treedir=$2
latdir=$3
dir=$4
# Check some files.
for f in $data/feats.scp $treedir/ali.1.gz $treedir/final.mdl $treedir/tree \
$latdir/lat.1.gz $latdir/final.mdl $latdir/num_jobs $latdir/splice_opts; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# Copy phones.txt from tree-dir to dir. Later, steps/nnet3/decode.sh will
# use it to check compatibility between training and decoding phone-sets.
cp $treedir/phones.txt $dir
# Set some variables.
nj=`cat $treedir/num_jobs` || exit 1; # number of jobs in alignment dir...
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log
echo $nj > $dir/num_jobs
cp $treedir/tree $dir
# First work out the feature and iVector dimension, needed for tdnn config creation.
feat_dim=$(feat-to-dim --print-args=false scp:$data/feats.scp -) || \
{ echo "$0: Error getting feature dim"; exit 1; }
if [ -z "$online_ivector_dir" ]; then
ivector_dim=0
else
ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1;
fi
if [ $stage -le -7 ]; then
echo "$0: creating phone language-model"
$cmd $dir/log/make_phone_lm.log \
chain-est-phone-lm $lm_opts \
"ark:gunzip -c $treedir/ali.*.gz | ali-to-phones $treedir/final.mdl ark:- ark:- |" \
$dir/phone_lm.fst || exit 1
fi
if [ $stage -le -6 ]; then
echo "$0: creating denominator FST"
copy-transition-model $treedir/final.mdl $dir/0.trans_mdl
$cmd $dir/log/make_den_fst.log \
chain-make-den-fst $dir/tree $dir/0.trans_mdl $dir/phone_lm.fst \
$dir/den.fst $dir/normalization.fst || exit 1;
fi
# work out num-leaves
num_leaves=$(am-info $dir/0.trans_mdl | grep -w pdfs | awk '{print $NF}') || exit 1;
[ $num_leaves -gt 0 ] || exit 1;
if [ $stage -le -5 ]; then
echo "$0: creating neural net configs";
if [ ! -z "$jesus_opts" ]; then
$cmd $dir/log/make_configs.log \
python steps/nnet3/make_jesus_configs.py \
--xent-regularize=$xent_regularize \
--include-log-softmax=false \
--splice-indexes "$splice_indexes" \
--feat-dim $feat_dim \
--ivector-dim $ivector_dim \
$jesus_opts \
--num-targets $num_leaves \
$dir/configs || exit 1;
else
[ $xent_regularize != "0.0" ] && \
echo "$0: --xent-regularize option not supported by tdnn/make_configs.py." && exit 1;
if [ ! -z "$relu_dim" ]; then
dim_opts="--relu-dim $relu_dim"
else
dim_opts="--pnorm-input-dim $pnorm_input_dim --pnorm-output-dim $pnorm_output_dim"
fi
python steps/nnet3/tdnn/make_configs.py $pool_opts \
--include-log-softmax=false \
--final-layer-normalize-target $final_layer_normalize_target \
--splice-indexes "$splice_indexes" \
--feat-dim $feat_dim \
--ivector-dim $ivector_dim \
$dim_opts \
--num-targets $num_leaves \
--use-presoftmax-prior-scale false \
$dir/configs || exit 1;
fi
# Initialize as "raw" nnet, prior to training the LDA-like preconditioning
# matrix. This first config just does any initial splicing that we do;
# we do this as it's a convenient way to get the stats for the 'lda-like'
# transform.
$cmd $dir/log/nnet_init.log \
nnet3-init --srand=-2 $dir/configs/init.config $dir/init.raw || exit 1;
fi
# sourcing the "vars" below sets
# left_context=(something)
# right_context=(something)
# num_hidden_layers=(something)
. $dir/configs/vars || exit 1;
# the next 2 lines are in case the configs were created by an older
# config-generating script, which writes to left_context and right_context
# instead of model_left_context and model_right_context.
[ -z $model_left_context ] && model_left_context=$left_context
[ -z $model_right_context ] && model_right_context=$right_context
! [ "$num_hidden_layers" -gt 0 ] && echo \
"$0: Expected num_hidden_layers to be defined" && exit 1;
[ -z "$transform_dir" ] && transform_dir=$latdir
if [ $stage -le -4 ] && [ -z "$egs_dir" ]; then
extra_opts=()
[ ! -z "$cmvn_opts" ] && extra_opts+=(--cmvn-opts "$cmvn_opts")
[ ! -z "$online_ivector_dir" ] && extra_opts+=(--online-ivector-dir $online_ivector_dir)
extra_opts+=(--transform-dir $transform_dir)
# we need a bit of extra left-context and right-context to allow for frame
# shifts (we use shifted version of the data for more variety).
extra_opts+=(--left-context $[$model_left_context+$frame_subsampling_factor/2+$extra_left_context])
extra_opts+=(--right-context $[$model_right_context+$frame_subsampling_factor/2])
echo "$0: calling get_egs.sh"
steps/nnet3/chain/get_egs.sh $egs_opts "${extra_opts[@]}" \
--frames-per-iter $frames_per_iter --stage $get_egs_stage \
--cmd "$cmd" \
--right-tolerance "$right_tolerance" \
--left-tolerance "$left_tolerance" \
--frames-per-eg $frames_per_eg \
--frame-subsampling-factor $frame_subsampling_factor \
--alignment-subsampling-factor $alignment_subsampling_factor \
$data $dir $latdir $dir/egs || exit 1;
fi
[ -z $egs_dir ] && egs_dir=$dir/egs
if [ "$feat_dim" != "$(cat $egs_dir/info/feat_dim)" ]; then
echo "$0: feature dimension mismatch with egs in $egs_dir: $feat_dim vs $(cat $egs_dir/info/feat_dim)";
exit 1;
fi
if [ "$ivector_dim" != "$(cat $egs_dir/info/ivector_dim)" ]; then
echo "$0: ivector dimension mismatch with egs in $egs_dir: $ivector_dim vs $(cat $egs_dir/info/ivector_dim)";
exit 1;
fi
# copy any of the following that exist, to $dir.
cp $egs_dir/{cmvn_opts,splice_opts,final.mat} $dir 2>/dev/null
# confirm that the egs_dir has the necessary context (especially important if
# the --egs-dir option was used on the command line).
egs_left_context=$(cat $egs_dir/info/left_context) || exit -1
egs_right_context=$(cat $egs_dir/info/right_context) || exit -1
( [ $egs_left_context -lt $model_left_context ] || \
[ $egs_right_context -lt $model_right_context ] ) && \
echo "$0: egs in $egs_dir have too little context" && exit -1;
frames_per_eg=$(cat $egs_dir/info/frames_per_eg) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }
num_archives=$(cat $egs_dir/info/num_archives) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }
num_archives_expanded=$[$num_archives*$frame_subsampling_factor]
[ $num_jobs_initial -gt $num_jobs_final ] && \
echo "$0: --initial-num-jobs cannot exceed --final-num-jobs" && exit 1;
[ $num_jobs_final -gt $num_archives_expanded ] && \
echo "$0: --final-num-jobs cannot exceed #archives $num_archives_expanded." && exit 1;
if [ $stage -le -3 ]; then
echo "$0: getting preconditioning matrix for input features."
num_lda_jobs=$num_archives
[ $num_lda_jobs -gt $max_lda_jobs ] && num_lda_jobs=$max_lda_jobs
# Write stats with the same format as stats for LDA.
$cmd JOB=1:$num_lda_jobs $dir/log/get_lda_stats.JOB.log \
nnet3-chain-acc-lda-stats --rand-prune=$rand_prune \
$dir/init.raw "ark:$egs_dir/cegs.JOB.ark" $dir/JOB.lda_stats || exit 1;
all_lda_accs=$(for n in $(seq $num_lda_jobs); do echo $dir/$n.lda_stats; done)
$cmd $dir/log/sum_transform_stats.log \
sum-lda-accs $dir/lda_stats $all_lda_accs || exit 1;
rm $all_lda_accs || exit 1;
# this computes a fixed affine transform computed in the way we described in
# Appendix C.6 of http://arxiv.org/pdf/1410.7455v6.pdf; it's a scaled variant
# of an LDA transform but without dimensionality reduction.
$cmd $dir/log/get_transform.log \
nnet-get-feature-transform $lda_opts $dir/lda.mat $dir/lda_stats || exit 1;
ln -sf ../lda.mat $dir/configs/lda.mat
fi
if [ $stage -le -1 ]; then
# Add the first layer; this will add in the lda.mat and
# presoftmax_prior_scale.vec.
echo "$0: creating initial raw model"
$cmd $dir/log/add_first_layer.log \
nnet3-init --srand=-1 $dir/init.raw $dir/configs/layer1.config $dir/0.raw || exit 1;
# The model-format for a 'chain' acoustic model is just the transition
# model and then the raw nnet, so we can use 'cat' to create this, as
# long as they have the same mode (binary or not binary).
# We ensure that they have the same mode (even if someone changed the
# script to make one or both of them text mode) by copying them both
# before concatenating them.
echo "$0: creating initial model"
$cmd $dir/log/init_model.log \
nnet3-am-init $dir/0.trans_mdl $dir/0.raw $dir/0.mdl || exit 1;
fi
echo $frame_subsampling_factor >$dir/frame_subsampling_factor || exit 1;
# set num_iters so that as close as possible, we process the data $num_epochs
# times, i.e. $num_iters*$avg_num_jobs) == $num_epochs*$num_archives_expanded
# where avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
num_archives_to_process=$[$num_epochs*$num_archives_expanded]
num_archives_processed=0
num_iters=$[($num_archives_to_process*2)/($num_jobs_initial+$num_jobs_final)]
! [ $num_iters -gt $[$finish_add_layers_iter+2] ] \
&& echo "$0: Insufficient epochs" && exit 1
finish_add_layers_iter=$[$num_hidden_layers * $add_layers_period]
echo "$0: Will train for $num_epochs epochs = $num_iters iterations"
if $use_gpu; then
parallel_suffix=""
train_queue_opt="--gpu 1"
combine_queue_opt="--gpu 1"
prior_gpu_opt="--use-gpu=yes"
prior_queue_opt="--gpu 1"
parallel_train_opts=
if ! cuda-compiled; then
echo "$0: WARNING: you are running with one thread but you have not compiled"
echo " for CUDA. You may be running a setup optimized for GPUs. If you have"
echo " GPUs and have nvcc installed, go to src/ and do ./configure; make"
exit 1
fi
else
echo "$0: without using a GPU this will be very slow. nnet3 does not yet support multiple threads."
parallel_train_opts="--use-gpu=no"
train_queue_opt="--num-threads $num_threads"
combine_queue_opt="" # the combine stage will be quite slow if not using
# GPU, as we didn't enable that program to use
# multiple threads.
prior_gpu_opt="--use-gpu=no"
prior_queue_opt=""
fi
approx_iters_per_epoch_final=$[$num_archives_expanded/$num_jobs_final]
# First work out how many iterations we want to combine over in the final
# nnet3-combine-fast invocation. (We may end up subsampling from these if the
# number exceeds max_model_combine). The number we use is:
# min(max(max_models_combine, approx_iters_per_epoch_final),
# 1/2 * iters_after_last_layer_added)
num_iters_combine=$max_models_combine
if [ $num_iters_combine -lt $approx_iters_per_epoch_final ]; then
num_iters_combine=$approx_iters_per_epoch_final
fi
half_iters_after_add_layers=$[($num_iters-$finish_add_layers_iter)/2]
if [ $num_iters_combine -gt $half_iters_after_add_layers ]; then
num_iters_combine=$half_iters_after_add_layers
fi
first_model_combine=$[$num_iters-$num_iters_combine+1]
x=0
deriv_time_opts=
[ ! -z "$left_deriv_truncate" ] && deriv_time_opts="--optimization.min-deriv-time=$left_deriv_truncate"
[ ! -z "$right_deriv_truncate" ] && \
deriv_time_opts="$deriv_time_opts --optimization.max-deriv-time=$((frames_per_eg - right_deriv_truncate))"
while [ $x -lt $num_iters ]; do
[ $x -eq $exit_stage ] && echo "$0: Exiting early due to --exit-stage $exit_stage" && exit 0;
this_num_jobs=$(perl -e "print int(0.5+$num_jobs_initial+($num_jobs_final-$num_jobs_initial)*$x/$num_iters);")
ilr=$initial_effective_lrate; flr=$final_effective_lrate; np=$num_archives_processed; nt=$num_archives_to_process;
this_learning_rate=$(perl -e "print (($x + 1 >= $num_iters ? $flr : $ilr*exp($np*log($flr/$ilr)/$nt))*$this_num_jobs);");
echo "On iteration $x, learning rate is $this_learning_rate."
if [ $x -ge 0 ] && [ $stage -le $x ]; then
# Set off jobs doing some diagnostics, in the background.
# Use the egs dir from the previous iteration for the diagnostics
$cmd $dir/log/compute_prob_valid.$x.log \
nnet3-chain-compute-prob --l2-regularize=$l2_regularize --leaky-hmm-coefficient=$leaky_hmm_coefficient --xent-regularize=$xent_regularize \
"nnet3-am-copy --raw=true $dir/$x.mdl -|" $dir/den.fst \
"ark,bg:nnet3-chain-merge-egs ark:$egs_dir/valid_diagnostic.cegs ark:- |" &
$cmd $dir/log/compute_prob_train.$x.log \
nnet3-chain-compute-prob --l2-regularize=$l2_regularize --leaky-hmm-coefficient=$leaky_hmm_coefficient --xent-regularize=$xent_regularize \
"nnet3-am-copy --raw=true $dir/$x.mdl -|" $dir/den.fst \
"ark,bg:nnet3-chain-merge-egs ark:$egs_dir/train_diagnostic.cegs ark:- |" &
if [ $x -gt 0 ]; then
# This doesn't use the egs, it only shows the relative change in model parameters.
$cmd $dir/log/progress.$x.log \
nnet3-show-progress --use-gpu=no "nnet3-am-copy --raw=true $dir/$[$x-1].mdl - |" \
"nnet3-am-copy --raw=true $dir/$x.mdl - |" '&&' \
nnet3-am-info $dir/$x.mdl &
fi
echo "Training neural net (pass $x)"
if [ $x -gt 0 ] && \
[ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \
[ $[$x%$add_layers_period] -eq 0 ]; then
do_average=false # if we've just mixed up, don't do averaging but take the
# best.
cur_num_hidden_layers=$[1+$x/$add_layers_period]
config=$dir/configs/layer$cur_num_hidden_layers.config
mdl="nnet3-am-copy --raw=true --learning-rate=$this_learning_rate $dir/$x.mdl - | nnet3-init --srand=$x - $config - |"
cache_io_opts=""
else
do_average=true
if [ $x -eq 0 ]; then do_average=false; fi # on iteration 0, pick the best, don't average.
mdl="nnet3-am-copy --raw=true --learning-rate=$this_learning_rate $dir/$x.mdl -|"
cache_io_opts="--read-cache=$dir/cache.$x"
fi
if $do_average; then
this_minibatch_size=$minibatch_size
this_max_param_change=$max_param_change
else
# on iteration zero or when we just added a layer, use a smaller minibatch
# size (and we will later choose the output of just one of the jobs): the
# model-averaging isn't always helpful when the model is changing too fast
# (i.e. it can worsen the objective function), and the smaller minibatch
# size will help to keep the update stable.
this_minibatch_size=$[$minibatch_size/2];
this_max_param_change=$(perl -e "print ($max_param_change/sqrt(2));")
fi
rm $dir/.error 2>/dev/null
(
trap 'for pid in $(jobs -pr); do kill -TERM $pid; done' INT QUIT TERM
# this sub-shell is so that when we "wait" below,
# we only wait for the training jobs that we just spawned,
# not the diagnostic jobs that we spawned above.
# We can't easily use a single parallel SGE job to do the main training,
# because the computation of which archive and which --frame option
# to use for each job is a little complex, so we spawn each one separately.
for n in $(seq $this_num_jobs); do
k=$[$num_archives_processed + $n - 1]; # k is a zero-based index that we'll derive
# the other indexes from.
archive=$[($k%$num_archives)+1]; # work out the 1-based archive index.
frame_shift=$[($k/$num_archives)%$frame_subsampling_factor];
if [ $n -eq 1 ]; then
# opts for computation cache (storing compiled computation).
this_cache_io_opts="$cache_io_opts --write-cache=$dir/cache.$[$x+1]"
else
this_cache_io_opts="$cache_io_opts"
fi
$cmd $train_queue_opt $dir/log/train.$x.$n.log \
nnet3-chain-train --apply-deriv-weights=$apply_deriv_weights \
--l2-regularize=$l2_regularize --leaky-hmm-coefficient=$leaky_hmm_coefficient --xent-regularize=$xent_regularize \
$this_cache_io_opts $parallel_train_opts $deriv_time_opts \
--max-param-change=$this_max_param_change \
--print-interval=10 "$mdl" $dir/den.fst \
"ark,bg:nnet3-chain-copy-egs --frame-shift=$frame_shift ark:$egs_dir/cegs.$archive.ark ark:- | nnet3-chain-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:-| nnet3-chain-merge-egs --minibatch-size=$this_minibatch_size ark:- ark:- |" \
$dir/$[$x+1].$n.raw || touch $dir/.error &
done
wait
)
# the error message below is not that informative, but $cmd will
# have printed a more specific one.
[ -f $dir/.error ] && echo "$0: error on iteration $x of training" && exit 1;
models_to_average=$(steps/nnet3/get_successful_models.py --difference-threshold 0.1 $this_num_jobs $dir/log/train.$x.%.log)
nnets_list=
for n in $models_to_average; do
nnets_list="$nnets_list $dir/$[$x+1].$n.raw"
done
if $do_average; then
# average the output of the different jobs.
$cmd $dir/log/average.$x.log \
nnet3-average $nnets_list - \| \
nnet3-am-copy --set-raw-nnet=- $dir/$x.mdl $dir/$[$x+1].mdl || exit 1;
else
# choose the best from the different jobs.
n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) {
$fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn";
undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } }
close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob;
$best_n=$n; } } print "$best_n\n"; ' $num_jobs_nnet $dir/log/train.$x.%d.log) || exit 1;
[ -z "$n" ] && echo "Error getting best model" && exit 1;
$cmd $dir/log/select.$x.log \
nnet3-am-copy --set-raw-nnet=$dir/$[$x+1].$n.raw $dir/$x.mdl $dir/$[$x+1].mdl || exit 1;
fi
rm $nnets_list
[ ! -f $dir/$[$x+1].mdl ] && exit 1;
if [ -f $dir/$[$x-1].mdl ] && $cleanup && \
[ $[($x-1)%10] -ne 0 ] && [ $[$x-1] -lt $first_model_combine ]; then
rm $dir/$[$x-1].mdl
fi
fi
rm $dir/cache.$x 2>/dev/null
x=$[$x+1]
num_archives_processed=$[$num_archives_processed+$this_num_jobs]
done
if [ $stage -le $num_iters ]; then
echo "Doing final combination to produce final.mdl"
# Now do combination. In the nnet3 setup, the logic
# for doing averaging of subsets of the models in the case where
# there are too many models to reliably esetimate interpolation
# factors (max_models_combine) is moved into the nnet3-combine
nnets_list=()
for n in $(seq 0 $[num_iters_combine-1]); do
iter=$[$first_model_combine+$n]
[ ! -f $dir/$iter.mdl ] && echo "Expected $mdl to exist" && exit 1;
mdl="nnet3-am-copy --raw=true $dir/$iter.mdl - |"
nnets_list[$n]="$mdl";
done
# Below, we use --use-gpu=no to disable nnet3-combine-fast from using a GPU,
# as if there are many models it can give out-of-memory error; and we set
# num-threads to 8 to speed it up (this isn't ideal...)
$cmd $combine_queue_opt $dir/log/combine.log \
nnet3-chain-combine --num-iters=40 --l2-regularize=$l2_regularize --leaky-hmm-coefficient=$leaky_hmm_coefficient \
--enforce-sum-to-one=true --enforce-positive-weights=true \
--verbose=3 $dir/den.fst "${nnets_list[@]}" "ark,bg:nnet3-chain-merge-egs --minibatch-size=$minibatch_size ark:$egs_dir/combine.cegs ark:-|" \
"|nnet3-am-copy --set-raw-nnet=- $dir/$first_model_combine.mdl $dir/final.mdl" || exit 1;
# Compute the probability of the final, combined model with
# the same subset we used for the previous compute_probs, as the
# different subsets will lead to different probs.
$cmd $dir/log/compute_prob_valid.final.log \
nnet3-chain-compute-prob --l2-regularize=$l2_regularize --leaky-hmm-coefficient=$leaky_hmm_coefficient --xent-regularize=$xent_regularize \
"nnet3-am-copy --raw=true $dir/final.mdl - |" $dir/den.fst \
"ark,bg:nnet3-chain-merge-egs ark:$egs_dir/valid_diagnostic.cegs ark:- |" &
$cmd $dir/log/compute_prob_train.final.log \
nnet3-chain-compute-prob --l2-regularize=$l2_regularize --leaky-hmm-coefficient=$leaky_hmm_coefficient --xent-regularize=$xent_regularize \
"nnet3-am-copy --raw=true $dir/final.mdl - |" $dir/den.fst \
"ark,bg:nnet3-chain-merge-egs ark:$egs_dir/train_diagnostic.cegs ark:- |" &
fi
if [ ! -f $dir/final.mdl ]; then
echo "$0: $dir/final.mdl does not exist."
# we don't want to clean up if the training didn't succeed.
exit 1;
fi
sleep 2
echo Done
if $cleanup; then
echo Cleaning up data
if $remove_egs && [[ $egs_dir =~ $dir/egs* ]]; then
steps/nnet2/remove_egs.sh $egs_dir
fi
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$x.mdl ]; then
# delete all but every 100th model; don't delete the ones which combine to form the final model.
rm $dir/$x.mdl
fi
done
fi
steps/info/chain_dir_info.pl $dir
exit 0