get_degs.sh
19.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#!/bin/bash
# Copyright 2012-2016 Johns Hopkins University (Author: Daniel Povey). Apache 2.0.
# Copyright 2014-2015 Vimal Manohar
# Decodes denlats and dumps egs for discriminative training, in one script
# (avoids writing the non-compact lattices to disk, which can use a lot of disk
# space).
# Begin configuration section.
cmd=run.pl
max_copy_jobs=5 # Limit disk I/O
# feature options
online_ivector_dir=
# example splitting and context options
frames_per_eg=150 # number of frames of labels per example.
# Note: may in general be a comma-separated string of alternative
# durations; the first one (the principal num-frames) is preferred.
frames_overlap_per_eg=30 # number of supervised frames of overlap that we aim for per eg.
# can be useful to avoid wasted data if you're using --left-deriv-truncate
# and --right-deriv-truncate.
looped=false # Set to true to enable looped decoding [can
# be a bit faster, for forward-recurrent models like LSTMs.]
# .. these context options also affect decoding.
extra_left_context=0 # amount of left-context per eg, past what is required by the model
# (only useful for recurrent networks like LSTMs/BLSTMs)
extra_right_context=0 # amount of right-context per eg, past what is required by the model
# (only useful for backwards-recurrent networks like BLSTMs)
extra_left_context_initial=-1 # if >= 0, the --extra-left-context to use at
# the start of utterances. Recommend 0 if you
# used 0 for the baseline DNN training; if <0,
# defaults to same as extra_left_context
extra_right_context_final=-1 # if >= 0, the --extra-right-context to use at
# the end of utterances. Recommend 0 if you
# used 0 for the baseline DNN training; if <0,
# defaults to same as extra_left_context
compress=true # set this to false to disable lossy compression of features
# dumped with egs (e.g. if you want to see whether results are
# affected).
num_utts_subset=80 # number of utterances in validation and training
# subsets used for diagnostics.
num_egs_subset=800 # number of egs (maximum) for the validation and training
# subsets used for diagnostics.
frames_per_iter=1000000 # each iteration of training, see this many frames
# per job. This is just a guideline; it will pick a number
# that divides the number of samples in the entire data.
cleanup=true
stage=0
nj=200
# By default this script uses final.mdl in <srcdir>, this configures it.
iter=final
# decoding-graph option
self_loop_scale=0.1 # for decoding graph.. should be 1.0 for chain models.
# options relating to decoding.
frames_per_chunk_decoding=150
beam=13.0
lattice_beam=7.0
acwt=0.1
max_active=5000
min_active=200
max_mem=20000000 # This will stop the processes getting too large.
# This is in bytes, but not "real" bytes-- you have to multiply
# by something like 5 or 10 to get real bytes (not sure why so large)
num_threads=1
# affects whether we invoke lattice-determinize-non-compact after decoding
# discriminative-get-supervision.
determinize_before_split=true
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 5 ]; then
echo "Usage: $0 [opts] <data> <lang> <src-dir> <ali-dir> <degs-dir>"
echo " e.g.: $0 data/train data/lang exp/nnet3/tdnn_a exp/nnet3/tdnn_a_ali exp/nnet3/tdnn_a_degs"
echo ""
echo "For options, see top of script file. Standard options:"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs (probably would be good to add --max-jobs-run 5 or so if using"
echo " # GridEngine (to avoid excessive NFS traffic)."
echo " --stage <stage|-8> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
echo " --online-ivector-dir <dir|""> # Directory for online-estimated iVectors, used in the"
echo " # online-neural-net setup."
echo " --nj <nj|200> # number of jobs to submit to the queue."
echo " --num-threads <n|1> # number of threads per decoding job"
exit 1;
fi
data=$1
lang=$2
srcdir=$3
alidir=$4
dir=$5
extra_files=
[ ! -z $online_ivector_dir ] && \
extra_files="$extra_files $online_ivector_dir/ivector_period $online_ivector_dir/ivector_online.scp"
# Check some files.
for f in $data/feats.scp $lang/L.fst $lang/phones/silence.csl $srcdir/${iter}.mdl $srcdir/tree \
$srcdir/cmvn_opts $alidir/ali.1.gz $alidir/num_jobs $extra_files; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
mkdir -p $dir/log $dir/info || exit 1;
utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt || exit 1;
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
utils/split_data.sh --per-utt $data $nj
sdata=$data/split${nj}utt
## Set up features.
echo "$0: feature type is raw"
cmvn_opts=$(cat $srcdir/cmvn_opts) || exit 1
feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |"
cp $srcdir/{splice_opts,cmvn_opts} $dir 2>/dev/null || true
## set iVector options
if [ ! -z "$online_ivector_dir" ]; then
online_ivector_period=$(cat $online_ivector_dir/ivector_period)
ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$online_ivector_period"
fi
## set frame-subsampling-factor option and copy file
if [ -f $srcdir/frame_subsampling_factor ]; then
frame_subsampling_factor=$(cat $srcdir/frame_subsampling_factor) || exit 1
# e.g. for 'chain' systems
frame_subsampling_opt="--frame-subsampling-factor=$frame_subsampling_factor"
cp $srcdir/frame_subsampling_factor $dir
if [ $frame_subsampling_factor -ne 1 ] && [ "$self_loop_scale" == "0.1" ]; then
echo "$0: warning: frame_subsampling_factor is not 1 (so likely a chain system),"
echo "... but self-loop-scale is 0.1. Make sure this is not a mistake."
sleep 1
fi
else
frame_subsampling_factor=1
fi
if [ "$self_loop_scale" == "1.0" ] && [ "$acwt" == 0.1 ]; then
echo "$0: warning: you set --self-loop-scale=1.0 (so likely a chain system)",
echo " ... but the acwt is still 0.1 (you probably want --acwt 1.0)"
sleep 1
fi
## Make the decoding graph.
if [ $stage -le 0 ]; then
new_lang="$dir/"$(basename "$lang")
rm -r $new_lang 2>/dev/null
cp -rH $lang $dir
echo "$0: Making unigram grammar FST in $new_lang"
oov=$(cat data/lang/oov.txt)
cat $data/text | utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt | \
awk '{for(n=2;n<=NF;n++){ printf("%s ", $n); } printf("\n"); }' | \
utils/make_unigram_grammar.pl | fstcompile | fstarcsort --sort_type=ilabel > $new_lang/G.fst \
|| exit 1;
utils/mkgraph.sh --self-loop-scale $self_loop_scale $new_lang $srcdir $dir/dengraph || exit 1;
fi
# copy alignments into ark,scp format which allows us to use different num-jobs
# from the alignment, and is also convenient for getting priors.
if [ $stage -le 1 ]; then
echo "$0: Copying input alignments"
nj_ali=$(cat $alidir/num_jobs)
alis=$(for n in $(seq $nj_ali); do echo -n "$alidir/ali.$n.gz "; done)
$cmd $dir/log/copy_alignments.log \
copy-int-vector "ark:gunzip -c $alis|" \
ark,scp:$dir/ali.ark,$dir/ali.scp || exit 1;
fi
[ -f $dir/ali.scp ] || { echo "$0: expected $dir/ali.scp to exist"; exit 1; }
if [ $stage -le 2 ]; then
echo "$0: working out number of frames of training data"
num_frames=$(steps/nnet2/get_num_frames.sh $data)
echo $num_frames > $dir/info/num_frames
echo "$0: working out feature dim"
feats_one="$(echo $feats | sed s:JOB:1:g)"
if feat_dim=$(feat-to-dim "$feats_one" - 2>/dev/null); then
echo $feat_dim > $dir/info/feat_dim
else # run without stderr redirection to show the error.
feat-to-dim "$feats_one" -; exit 1
fi
else
num_frames=$(cat $dir/info/num_frames)
fi
if ! [ "$num_frames" -gt 0 ]; then
echo "$0: bad num-frames=$num_frames"; exit 1
fi
# copy the model to the degs directory.
cp $srcdir/${iter}.mdl $dir/final.mdl || exit 1
# Create some info in $dir/info
# Work out total number of archives. Add one on the assumption the
# num-frames won't divide exactly, and we want to round up.
num_archives=$[num_frames/frames_per_iter+1]
echo $num_archives >$dir/info/num_archives
echo $frame_subsampling_factor >$dir/info/frame_subsampling_factor
cp $lang/phones/silence.csl $dir/info/
# the first field in frames_per_eg (which is a comma-separated list of numbers)
# is the 'principal' frames-per-eg, and for purposes of working out the number
# of archives we assume that this will be the average number of frames per eg.
frames_per_eg_principal=$(echo $frames_per_eg | cut -d, -f1)
# read 'mof' as max_open_filehandles.
# When splitting up the scp files, we don't want to have to hold too many
# files open at once. If the number of archives we have to write exceeds
# 256 (or less if unlimit -n is smaller), we split in two stages.
mof=$(ulimit -n) || exit 1
# the next step helps work around inconsistency between different machines on a
# cluster. It's unlikely that the allowed number of open filehandles would ever
# be less than 256.
if [ $mof -gt 256 ]; then mof=256; fi
# allocate mof minus 3 for the max allowed outputs, because of
# stdin,stderr,stdout. this will normally come to 253. We'll do a two-stage
# splitting if the needed number of scp files is larger than this.
num_groups=$[(num_archives+(mof-3)-1)/(mof-3)]
group_size=$[(num_archives+num_groups-1)/num_groups]
if [ $num_groups -gt 1 ]; then
new_num_archives=$[group_size*num_groups]
[ $new_num_archives -ne $num_archives ] && \
echo "$0: rounding up num-archives from $num_archives to $new_num_archives for easier splitting"
num_archives=$new_num_archives
echo $new_num_archives >$dir/info/num_archives
fi
if [ -e $dir/storage ]; then
# Make soft links to storage directories, if distributing this way.. See
# utils/create_split_dir.pl.
echo "$0: creating data links"
utils/create_data_link.pl $(for x in $(seq $num_archives); do echo $dir/degs.$x.ark; done)
utils/create_data_link.pl $(for x in $(seq $num_archives); do echo $dir/degs.$x.scp; done)
utils/create_data_link.pl $(for y in $(seq $nj); do echo $dir/degs_orig.$y.ark; done)
utils/create_data_link.pl $(for y in $(seq $nj); do echo $dir/degs_orig.$y.scp; done)
utils/create_data_link.pl $(for y in $(seq $nj); do echo $dir/degs_orig_filtered.$y.scp; done)
fi
extra_context_opts="--extra-left-context=$extra_left_context --extra-right-context=$extra_right_context --extra-left-context-initial=$extra_left_context_initial --extra-right-context-final=$extra_right_context_final"
# work out absolute context opts, --left-context and so on [need model context]
model_left_context=$(nnet3-am-info $srcdir/${iter}.mdl | grep "^left-context:" | awk '{print $2}')
model_right_context=$(nnet3-am-info $srcdir/${iter}.mdl | grep "^right-context:" | awk '{print $2}')
left_context=$[model_left_context+extra_left_context+frame_subsampling_factor/2]
right_context=$[model_right_context+extra_right_context+frame_subsampling_factor/2]
context_opts="--left-context=$left_context --right-context=$right_context"
if [ $extra_left_context_initial -ge 0 ]; then
left_context_initial=$[model_left_context+extra_left_context_initial+frame_subsampling_factor/2]
context_opts="$context_opts --left-context-initial=$left_context_initial"
fi
if [ $extra_right_context_final -ge 0 ]; then
right_context_final=$[model_right_context+extra_right_context_final+frame_subsampling_factor/2]
context_opts="$context_opts --right-context-final=$right_context_final"
fi
##
if [ $num_threads -eq 1 ]; then
if $looped; then
decoder="nnet3-latgen-faster-looped"
[ $extra_left_context_initial -ge 0 ] && \
decoder="$decoder --extra-left-context-initial=$extra_left_context_initial"
else
decoder="nnet3-latgen-faster $extra_context_opts"
fi
threads_cmd_opt=
else
$looped && { echo "$0: --num-threads must be one if you use looped decoding"; exit 1; }
threads_cmd_opt="--num-threads $num_threads"
decoder="nnet3-latgen-faster-parallel --num-threads=$num_threads $extra_context_opts"
true
fi
# set the command to determinize lattices, if specified.
if $determinize_before_split; then
lattice_determinize_cmd="lattice-determinize-non-compact --acoustic-scale=$acwt --max-mem=$max_mem --minimize=true --prune=true --beam=$lattice_beam ark:- ark:-"
else
lattice_determinize_cmd="cat"
fi
if [ $stage -le 3 ]; then
echo "$0: decoding and dumping egs"
$cmd $threads_cmd_opt JOB=1:$nj $dir/log/decode_and_get_egs.JOB.log \
$decoder \
$ivector_opts $frame_subsampling_opt \
--frames-per-chunk=$frames_per_chunk_decoding \
--determinize-lattice=false \
--max-active=$max_active --min-active=$min_active --beam=$beam \
--lattice-beam=$lattice_beam --acoustic-scale=$acwt --allow-partial=false \
--word-symbol-table=$lang/words.txt $dir/final.mdl \
$dir/dengraph/HCLG.fst "$feats" ark:- \| \
$lattice_determinize_cmd \| \
nnet3-discriminative-get-egs --acoustic-scale=$acwt --compress=$compress \
$frame_subsampling_opt --num-frames=$frames_per_eg \
--num-frames-overlap=$frames_overlap_per_eg \
$ivector_opts $context_opts \
$dir/final.mdl "$feats" "ark,s,cs:-" \
"scp:utils/filter_scp.pl $sdata/JOB/utt2spk $dir/ali.scp |" \
ark,scp:$dir/degs_orig.JOB.ark,$dir/degs_orig.JOB.scp || exit 1
fi
if [ $stage -le 4 ]; then
echo "$0: getting validation utterances."
## Get list of validation utterances.
awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_utts_subset \
> $dir/valid_uttlist || exit 1;
if [ -f $data/utt2uniq ]; then # this matters if you use data augmentation.
echo "File $data/utt2uniq exists, so augmenting valid_uttlist to"
echo "include all perturbed versions of the same 'real' utterances."
mv $dir/valid_uttlist $dir/valid_uttlist.tmp
utils/utt2spk_to_spk2utt.pl $data/utt2uniq > $dir/uniq2utt
cat $dir/valid_uttlist.tmp | utils/apply_map.pl $data/utt2uniq | \
sort | uniq | utils/apply_map.pl $dir/uniq2utt | \
awk '{for(n=1;n<=NF;n++) print $n;}' | sort > $dir/valid_uttlist
rm $dir/uniq2utt $dir/valid_uttlist.tmp
fi
# the following awk statement turns 'foo123' into something like
# '^foo123-[0-9]\+ ' which is a grep expression that matches the lines in the
# .scp file that correspond to an utterance in valid_uttlist.
cat $dir/valid_uttlist | awk '{printf("^%s-[0-9]\\+ \n", $1);}' \
>$dir/valid_uttlist.regexps || exit 1
# remove the validation utterances from deg_orig.*.scp to produce
# degs_orig_filtered.*.scp.
# note: the '||' true is in case the grep returns nonzero status for
# some splits, because they were all validation utterances.
$cmd JOB=1:$nj $dir/log/filter_and_shuffle.JOB.log \
grep -v -f $dir/valid_uttlist.regexps $dir/degs_orig.JOB.scp '>' \
$dir/degs_orig_filtered.JOB.scp '||' true || exit 1
# extract just the validation utterances from deg_orig.*.scp to produce
# degs_valid.*.scp.
$cmd JOB=1:$nj $dir/log/extract_validation_egs.JOB.log \
grep -f $dir/valid_uttlist.regexps $dir/degs_orig.JOB.scp '>' \
$dir/degs_valid.JOB.scp '||' true || exit 1
for j in $(seq $nj); do
cat $dir/degs_valid.$j.scp; rm $dir/degs_valid.$j.scp;
done | utils/shuffle_list.pl | head -n$num_utts_subset >$dir/valid_diagnostic.scp || exit 1
[ -s $dir/valid_diagnostic.scp ] || { echo "$0: error getting validation egs"; exit 1; }
fi
# function/pseudo-command to randomly shuffle input lines using a small buffer size
function shuffle {
perl -e ' use List::Util qw(shuffle); srand(0);
$bufsz=1000; @A = (); while(<STDIN>) { push @A, $_; if (@A == $bufsz) {
$n=int(rand()*$bufsz); print $A[$n]; $A[$n] = $A[$bufsz-1]; pop @A; }}
@A = shuffle(@A); print @A; '
}
# funtion/pseudo-command to put input lines round robin to command line args.
function round_robin {
perl -e '@F=(); foreach $a (@ARGV) { my $f; open($f, ">$a") || die "opening file $a"; push @F, $f; }
$N=@F; $N>0||die "No output files"; $n=0;
while (<STDIN>) { $fh=$F[$n%$N]; $n++; print $fh $_ || die "error printing"; } ' $*
}
if [ $stage -le 5 ]; then
echo "$0: rearranging scp files"
if [ $num_groups -eq 1 ]; then
# output directly to the archive files.
outputs=$(for n in $(seq $num_archives); do echo $dir/degs.$n.scp; done)
else
# output to intermediate 'group' files.
outputs=$(for g in $(seq $num_groups); do echo $dir/degs_group.$g.scp; done)
fi
# We can't use UNIX's split command because of compatibility issues (BSD
# version very different from GNU version), so we use 'round_robin' which is
# a bash function that calls an inline perl script.
for j in $(seq $nj); do cat $dir/degs_orig_filtered.$j.scp; done | \
shuffle | round_robin $outputs || exit 1
if [ $num_groups -gt 1 ]; then
for g in $(seq $num_groups); do
first=$[1+group_size*(g-1)]
last=$[group_size*g]
outputs=$(for n in $(seq $first $last); do echo $dir/degs.$n.scp; done)
cat $dir/degs_group.$g.scp | shuffle | round_robin $outputs
done
fi
fi
if [ $stage -le 6 ]; then
echo "$0: getting train-subset scp"
# get degs_train_subset.scp by taking the top and tail of the degs files [quicker
# than cat'ing all the files, random shuffling and head]
nl=$[$num_egs_subset/$num_archives + 1]
# use utils/shuffle_list.pl because it provides a complete shuffle (ok since
# the amount of data is small). note: shuf is not available on mac by
# default.
for n in $(seq $num_archives); do
head -n$nl $dir/degs.$n.scp; tail -n$nl $dir/degs.$n.scp
done | utils/shuffle_list.pl | head -n$num_utts_subset >$dir/train_diagnostic.scp
[ -s $dir/train_diagnostic.scp ] || { echo "$0: error getting train_diagnostic.scp"; exit 1; }
fi
if [ $stage -le 7 ]; then
echo "$0: creating final archives"
$cmd --max-jobs-run "$max_copy_jobs" \
JOB=1:$num_archives $dir/log/copy_archives.JOB.log \
nnet3-discriminative-copy-egs scp:$dir/degs.JOB.scp ark:$dir/degs.JOB.ark || exit 1
run.pl $dir/log/copy_train_subset.log \
nnet3-discriminative-copy-egs scp:$dir/train_diagnostic.scp \
ark:$dir/train_diagnostic.degs || exit 1
run.pl $dir/log/copy_valid_subset.log \
nnet3-discriminative-copy-egs scp:$dir/valid_diagnostic.scp \
ark:$dir/valid_diagnostic.degs || exit 1
fi
if [ $stage -le 10 ] && $cleanup; then
echo "$0: cleaning up temporary files."
for j in $(seq $nj); do
for f in $dir/degs_orig.$j.{ark,scp} $dir/degs_orig_filtered.$j.scp; do
[ -L $f ] && rm $(utils/make_absolute.sh $f); rm $f
done
done
rm $dir/degs_group.*.scp $dir/valid_diagnostic.scp $dir/train_diagnostic.scp 2>/dev/null
rm $dir/ali.ark $dir/ali.scp 2>/dev/null
for n in $(seq $num_archives); do
for f in $dir/degs.$n.scp; do
[ -L $f ] && rm $(utils/make_absolute.sh $f); rm $f
done
done
fi
echo "$0: Finished decoding and preparing training examples"
exit 0