get_egs.sh
19.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#!/bin/bash
# Copyright 2012-2016 Johns Hopkins University (Author: Daniel Povey). Apache 2.0.
#
# This script, which will generally be called from other neural-net training
# scripts, extracts the training examples used to train the neural net (and also
# the validation examples used for diagnostics), and puts them in separate archives.
#
# This script dumps egs with several frames of labels, controlled by the
# frames_per_eg config variable (default: 8). This takes many times less disk
# space because typically we have 4 to 7 frames of context on the left and
# right, and this ends up getting shared. This is at the expense of slightly
# higher disk I/O while training.
set -o pipefail
trap "" PIPE
# Begin configuration section.
cmd=run.pl
frame_subsampling_factor=1
frames_per_eg=8 # number of frames of labels per example. more->less disk space and
# less time preparing egs, but more I/O during training.
# Note: may in general be a comma-separated string of alternative
# durations (more useful when using large chunks, e.g. for BLSTMs);
# the first one (the principal num-frames) is preferred.
left_context=4 # amount of left-context per eg (i.e. extra frames of input features
# not present in the output supervision).
right_context=4 # amount of right-context per eg.
left_context_initial=-1 # if >=0, left-context for first chunk of an utterance
right_context_final=-1 # if >=0, right-context for last chunk of an utterance
compress=true # set this to false to disable compression (e.g. if you want to see whether
# results are affected).
num_utts_subset=300 # number of utterances in validation and training
# subsets used for shrinkage and diagnostics.
num_valid_frames_combine=0 # #valid frames for combination weights at the very end.
num_train_frames_combine=60000 # # train frames for the above.
num_frames_diagnostic=10000 # number of frames for "compute_prob" jobs
samples_per_iter=400000 # this is the target number of egs in each archive of egs
# (prior to merging egs). We probably should have called
# it egs_per_iter. This is just a guideline; it will pick
# a number that divides the number of samples in the
# entire data.
stage=0
nj=6 # This should be set to the maximum number of jobs you are
# comfortable to run in parallel; you can increase it if your disk
# speed is greater and you have more machines.
srand=0 # rand seed for nnet3-copy-egs and nnet3-shuffle-egs
online_ivector_dir= # can be used if we are including speaker information as iVectors.
cmvn_opts= # can be used for specifying CMVN options, if feature type is not lda (if lda,
# it doesn't make sense to use different options than were used as input to the
# LDA transform). This is used to turn off CMVN in the online-nnet experiments.
generate_egs_scp=false # If true, it will generate egs.JOB.*.scp per egs archive
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 3 ]; then
echo "Usage: $0 [opts] <data> <ali-dir> <egs-dir>"
echo " e.g.: $0 data/train exp/tri3_ali exp/tri4_nnet/egs"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --nj <nj> # The maximum number of jobs you want to run in"
echo " # parallel (increase this only if you have good disk and"
echo " # network speed). default=6"
echo " --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs."
echo " --samples-per-iter <#samples;400000> # Target number of egs per archive (option is badly named)"
echo " --frames-per-eg <frames;8> # number of frames per eg on disk"
echo " # May be either a single number or a comma-separated list"
echo " # of alternatives (useful when training LSTMs, where the"
echo " # frames-per-eg is the chunk size, to get variety of chunk"
echo " # sizes). The first in the list is preferred and is used"
echo " # when working out the number of archives etc."
echo " --left-context <int;4> # Number of frames on left side to append for feature input"
echo " --right-context <int;4> # Number of frames on right side to append for feature input"
echo " --left-context-initial <int;-1> # If >= 0, left-context for first chunk of an utterance"
echo " --right-context-final <int;-1> # If >= 0, right-context for last chunk of an utterance"
echo " --num-frames-diagnostic <#frames;4000> # Number of frames used in computing (train,valid) diagnostics"
echo " --num-valid-frames-combine <#frames;10000> # Number of frames used in getting combination weights at the"
echo " # very end."
echo " --stage <stage|0> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
data=$1
alidir=$2
dir=$3
# Check some files.
[ ! -z "$online_ivector_dir" ] && \
extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period"
for f in $data/feats.scp $alidir/ali.1.gz $alidir/final.mdl $alidir/tree $extra_files; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log $dir/info
cp $alidir/tree $dir
num_ali_jobs=$(cat $alidir/num_jobs) || exit 1;
num_utts=$(cat $data/utt2spk | wc -l)
if ! [ $num_utts -gt $[$num_utts_subset*4] ]; then
echo "$0: number of utterances $num_utts in your training data is too small versus --num-utts-subset=$num_utts_subset"
echo "... you probably have so little data that it doesn't make sense to train a neural net."
exit 1
fi
# Get list of validation utterances.
awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl 2>/dev/null | head -$num_utts_subset \
> $dir/valid_uttlist
if [ -f $data/utt2uniq ]; then # this matters if you use data augmentation.
echo "File $data/utt2uniq exists, so augmenting valid_uttlist to"
echo "include all perturbed versions of the same 'real' utterances."
mv $dir/valid_uttlist $dir/valid_uttlist.tmp
utils/utt2spk_to_spk2utt.pl $data/utt2uniq > $dir/uniq2utt
cat $dir/valid_uttlist.tmp | utils/apply_map.pl $data/utt2uniq | \
sort | uniq | utils/apply_map.pl $dir/uniq2utt | \
awk '{for(n=1;n<=NF;n++) print $n;}' | sort > $dir/valid_uttlist
rm $dir/uniq2utt $dir/valid_uttlist.tmp
fi
awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid_uttlist | \
utils/shuffle_list.pl 2>/dev/null | head -$num_utts_subset > $dir/train_subset_uttlist
echo "$0: creating egs. To ensure they are not deleted later you can do: touch $dir/.nodelete"
## Set up features.
echo "$0: feature type is raw"
feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |"
valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
echo $cmvn_opts >$dir/cmvn_opts # caution: the top-level nnet training script should copy this to its own dir now.
if [ ! -z "$online_ivector_dir" ]; then
ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1;
echo $ivector_dim > $dir/info/ivector_dim
steps/nnet2/get_ivector_id.sh $online_ivector_dir > $dir/info/final.ie.id || exit 1
ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1;
ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$ivector_period"
else
ivector_opts=""
echo 0 >$dir/info/ivector_dim
fi
if [ $stage -le 1 ]; then
echo "$0: working out number of frames of training data"
num_frames=$(steps/nnet2/get_num_frames.sh $data)
echo $num_frames > $dir/info/num_frames
echo "$0: working out feature dim"
feats_one="$(echo $feats | sed s/JOB/1/g)"
if feat_dim=$(feat-to-dim "$feats_one" - 2>/dev/null); then
echo $feat_dim > $dir/info/feat_dim
else # run without redirection to show the error.
feat-to-dim "$feats_one" -; exit 1
fi
else
num_frames=$(cat $dir/info/num_frames) || exit 1;
feat_dim=$(cat $dir/info/feat_dim) || exit 1;
fi
# the first field in frames_per_eg (which is a comma-separated list of numbers)
# is the 'principal' frames-per-eg, and for purposes of working out the number
# of archives we assume that this will be the average number of frames per eg.
frames_per_eg_principal=$(echo $frames_per_eg | cut -d, -f1)
# the + 1 is to round up, not down... we assume it doesn't divide exactly.
num_archives=$[$num_frames/($frames_per_eg_principal*$samples_per_iter)+1]
if [ $num_archives -eq 1 ]; then
echo "*** $0: warning: the --frames-per-eg is too large to generate one archive with"
echo "*** as many as --samples-per-iter egs in it. Consider reducing --frames-per-eg."
sleep 4
fi
# We may have to first create a smaller number of larger archives, with number
# $num_archives_intermediate, if $num_archives is more than the maximum number
# of open filehandles that the system allows per process (ulimit -n).
# This sometimes gives a misleading answer as GridEngine sometimes changes that
# somehow, so we limit it to 512.
max_open_filehandles=$(ulimit -n) || exit 1
[ $max_open_filehandles -gt 512 ] && max_open_filehandles=512
num_archives_intermediate=$num_archives
archives_multiple=1
while [ $[$num_archives_intermediate+4] -gt $max_open_filehandles ]; do
archives_multiple=$[$archives_multiple+1]
num_archives_intermediate=$[$num_archives/$archives_multiple+1];
done
# now make sure num_archives is an exact multiple of archives_multiple.
num_archives=$[$archives_multiple*$num_archives_intermediate]
echo $num_archives >$dir/info/num_archives
echo $frames_per_eg >$dir/info/frames_per_eg
# Work out the number of egs per archive
egs_per_archive=$[$num_frames/($frames_per_eg_principal*$num_archives)]
! [ $egs_per_archive -le $samples_per_iter ] && \
echo "$0: script error: egs_per_archive=$egs_per_archive not <= samples_per_iter=$samples_per_iter" \
&& exit 1;
echo $egs_per_archive > $dir/info/egs_per_archive
echo "$0: creating $num_archives archives, each with $egs_per_archive egs, with"
echo "$0: $frames_per_eg labels per example, and (left,right) context = ($left_context,$right_context)"
if [ $left_context_initial -ge 0 ] || [ $right_context_final -ge 0 ]; then
echo "$0: ... and (left-context-initial,right-context-final) = ($left_context_initial,$right_context_final)"
fi
if [ -e $dir/storage ]; then
# Make soft links to storage directories, if distributing this way.. See
# utils/create_split_dir.pl.
echo "$0: creating data links"
utils/create_data_link.pl $(for x in $(seq $num_archives); do echo $dir/egs.$x.ark; done)
for x in $(seq $num_archives_intermediate); do
utils/create_data_link.pl $(for y in $(seq $nj); do echo $dir/egs_orig.$y.$x.ark; done)
done
fi
if [ $stage -le 2 ]; then
echo "$0: copying data alignments"
for id in $(seq $num_ali_jobs); do gunzip -c $alidir/ali.$id.gz; done | \
copy-int-vector ark:- ark,scp:$dir/ali.ark,$dir/ali.scp || exit 1;
fi
egs_opts="--left-context=$left_context --right-context=$right_context --compress=$compress --num-frames=$frames_per_eg"
[ $left_context_initial -ge 0 ] && egs_opts="$egs_opts --left-context-initial=$left_context_initial"
[ $right_context_final -ge 0 ] && egs_opts="$egs_opts --right-context-final=$right_context_final"
echo $left_context > $dir/info/left_context
echo $right_context > $dir/info/right_context
echo $left_context_initial > $dir/info/left_context_initial
echo $right_context_final > $dir/info/right_context_final
num_pdfs=$(tree-info --print-args=false $alidir/tree | grep num-pdfs | awk '{print $2}')
if [ $stage -le 3 ]; then
echo "$0: Getting validation and training subset examples."
rm $dir/.error 2>/dev/null
echo "$0: ... extracting validation and training-subset alignments."
# do the filtering just once, as ali.scp may be long.
utils/filter_scp.pl <(cat $dir/valid_uttlist $dir/train_subset_uttlist) \
<$dir/ali.scp >$dir/ali_special.scp
$cmd $dir/log/create_valid_subset.log \
utils/filter_scp.pl $dir/valid_uttlist $dir/ali_special.scp \| \
ali-to-pdf $alidir/final.mdl scp:- ark:- \| \
ali-to-post ark:- ark:- \| \
nnet3-get-egs --num-pdfs=$num_pdfs --frame-subsampling-factor=$frame_subsampling_factor \
$ivector_opts $egs_opts "$valid_feats" \
ark,s,cs:- "ark:$dir/valid_all.egs" || touch $dir/.error &
$cmd $dir/log/create_train_subset.log \
utils/filter_scp.pl $dir/train_subset_uttlist $dir/ali_special.scp \| \
ali-to-pdf $alidir/final.mdl scp:- ark:- \| \
ali-to-post ark:- ark:- \| \
nnet3-get-egs --num-pdfs=$num_pdfs --frame-subsampling-factor=$frame_subsampling_factor \
$ivector_opts $egs_opts "$train_subset_feats" \
ark,s,cs:- "ark:$dir/train_subset_all.egs" || touch $dir/.error &
wait;
[ -f $dir/.error ] && echo "Error detected while creating train/valid egs" && exit 1
echo "... Getting subsets of validation examples for diagnostics and combination."
if $generate_egs_scp; then
valid_diagnostic_output="ark,scp:$dir/valid_diagnostic.egs,$dir/valid_diagnostic.scp"
train_diagnostic_output="ark,scp:$dir/train_diagnostic.egs,$dir/train_diagnostic.scp"
else
valid_diagnostic_output="ark:$dir/valid_diagnostic.egs"
train_diagnostic_output="ark:$dir/train_diagnostic.egs"
fi
$cmd $dir/log/create_valid_subset_combine.log \
nnet3-subset-egs --n=$[$num_valid_frames_combine/$frames_per_eg_principal] ark:$dir/valid_all.egs \
ark:$dir/valid_combine.egs || touch $dir/.error &
$cmd $dir/log/create_valid_subset_diagnostic.log \
nnet3-subset-egs --n=$[$num_frames_diagnostic/$frames_per_eg_principal] ark:$dir/valid_all.egs \
$valid_diagnostic_output || touch $dir/.error &
$cmd $dir/log/create_train_subset_combine.log \
nnet3-subset-egs --n=$[$num_train_frames_combine/$frames_per_eg_principal] ark:$dir/train_subset_all.egs \
ark:$dir/train_combine.egs || touch $dir/.error &
$cmd $dir/log/create_train_subset_diagnostic.log \
nnet3-subset-egs --n=$[$num_frames_diagnostic/$frames_per_eg_principal] ark:$dir/train_subset_all.egs \
$train_diagnostic_output || touch $dir/.error &
wait
sleep 5 # wait for file system to sync.
cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs
if $generate_egs_scp; then
cat $dir/valid_combine.egs $dir/train_combine.egs | \
nnet3-copy-egs ark:- ark,scp:$dir/combine.egs,$dir/combine.scp
rm $dir/{train,valid}_combine.scp
else
cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs
fi
for f in $dir/{combine,train_diagnostic,valid_diagnostic}.egs; do
[ ! -s $f ] && echo "No examples in file $f" && exit 1;
done
rm $dir/valid_all.egs $dir/train_subset_all.egs $dir/{train,valid}_combine.egs
fi
if [ $stage -le 4 ]; then
# create egs_orig.*.*.ark; the first index goes to $nj,
# the second to $num_archives_intermediate.
egs_list=
for n in $(seq $num_archives_intermediate); do
egs_list="$egs_list ark:$dir/egs_orig.JOB.$n.ark"
done
echo "$0: Generating training examples on disk"
# The examples will go round-robin to egs_list.
$cmd JOB=1:$nj $dir/log/get_egs.JOB.log \
nnet3-get-egs --num-pdfs=$num_pdfs --frame-subsampling-factor=$frame_subsampling_factor \
$ivector_opts $egs_opts "$feats" \
"ark,s,cs:filter_scp.pl $sdata/JOB/utt2spk $dir/ali.scp | ali-to-pdf $alidir/final.mdl scp:- ark:- | ali-to-post ark:- ark:- |" ark:- \| \
nnet3-copy-egs --random=true --srand=\$[JOB+$srand] ark:- $egs_list || exit 1;
fi
if [ $stage -le 5 ]; then
echo "$0: recombining and shuffling order of archives on disk"
# combine all the "egs_orig.*.JOB.scp" (over the $nj splits of the data) and
# shuffle the order, writing to the egs.JOB.ark
# the input is a concatenation over the input jobs.
egs_list=
for n in $(seq $nj); do
egs_list="$egs_list $dir/egs_orig.$n.JOB.ark"
done
if [ $archives_multiple == 1 ]; then # normal case.
if $generate_egs_scp; then
output_archive="ark,scp:$dir/egs.JOB.ark,$dir/egs.JOB.scp"
else
output_archive="ark:$dir/egs.JOB.ark"
fi
$cmd --max-jobs-run $nj JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \
nnet3-shuffle-egs --srand=\$[JOB+$srand] "ark:cat $egs_list|" $output_archive || exit 1;
if $generate_egs_scp; then
#concatenate egs.JOB.scp in single egs.scp
rm $dir/egs.scp 2> /dev/null || true
for j in $(seq $num_archives_intermediate); do
cat $dir/egs.$j.scp || exit 1;
done > $dir/egs.scp || exit 1;
for f in $dir/egs.*.scp; do rm $f; done
fi
else
# we need to shuffle the 'intermediate archives' and then split into the
# final archives. we create soft links to manage this splitting, because
# otherwise managing the output names is quite difficult (and we don't want
# to submit separate queue jobs for each intermediate archive, because then
# the --max-jobs-run option is hard to enforce).
if $generate_egs_scp; then
output_archives="$(for y in $(seq $archives_multiple); do echo ark,scp:$dir/egs.JOB.$y.ark,$dir/egs.JOB.$y.scp; done)"
else
output_archives="$(for y in $(seq $archives_multiple); do echo ark:$dir/egs.JOB.$y.ark; done)"
fi
for x in $(seq $num_archives_intermediate); do
for y in $(seq $archives_multiple); do
archive_index=$[($x-1)*$archives_multiple+$y]
# egs.intermediate_archive.{1,2,...}.ark will point to egs.archive.ark
ln -sf egs.$archive_index.ark $dir/egs.$x.$y.ark || exit 1
done
done
$cmd --max-jobs-run $nj JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \
nnet3-shuffle-egs --srand=\$[JOB+$srand] "ark:cat $egs_list|" ark:- \| \
nnet3-copy-egs ark:- $output_archives || exit 1;
if $generate_egs_scp; then
#concatenate egs.JOB.scp in single egs.scp
rm $dir/egs.scp 2> /dev/null || true
for j in $(seq $num_archives_intermediate); do
for y in $(seq $num_archives_intermediate); do
cat $dir/egs.$j.$y.scp || exit 1;
done
done > $dir/egs.scp || exit 1;
for f in $dir/egs.*.*.scp; do rm $f; done
fi
fi
fi
if [ $frame_subsampling_factor -ne 1 ]; then
echo $frame_subsampling_factor > $dir/info/frame_subsampling_factor
fi
if [ $stage -le 6 ]; then
echo "$0: removing temporary archives"
for x in $(seq $nj); do
for y in $(seq $num_archives_intermediate); do
file=$dir/egs_orig.$x.$y.ark
[ -L $file ] && rm $(utils/make_absolute.sh $file)
rm $file
done
done
if [ $archives_multiple -gt 1 ]; then
# there are some extra soft links that we should delete.
for f in $dir/egs.*.*.ark; do rm $f; done
fi
echo "$0: removing temporary alignments"
# Ignore errors below because trans.* might not exist.
rm $dir/ali.{ark,scp} 2>/dev/null
fi
echo "$0: Finished preparing training examples"