get_egs_targets.sh 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
#!/bin/bash

# Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey).
#           2015-2016 Vimal Manohar
# Apache 2.0.

# This script is similar to steps/nnet3/get_egs.sh but used
# when getting general targets (not from alignment directory) for raw nnet
#
# This script, which will generally be called from other neural-net training
# scripts, extracts the training examples used to train the neural net (and also
# the validation examples used for diagnostics), and puts them in separate archives.
#
# This script dumps egs with several frames of labels, controlled by the
# frames_per_eg config variable (default: 8).  This takes many times less disk
# space because typically we have 4 to 7 frames of context on the left and
# right, and this ends up getting shared.  This is at the expense of slightly
# higher disk I/O while training.

set -o pipefail
trap "" PIPE

# Begin configuration section.
cmd=run.pl
target_type=sparse  # dense to have dense targets,
                    # sparse to have posteriors targets
num_targets=        # required for target-type=sparse with raw nnet
frame_subsampling_factor=1
length_tolerance=2
frames_per_eg=8   # number of frames of labels per example.  more->less disk space and
                  # less time preparing egs, but more I/O during training.
                  # Note: may in general be a comma-separated string of alternative
                  # durations (more useful when using large chunks, e.g. for BLSTMs);
                  # the first one (the principal num-frames) is preferred.
left_context=4    # amount of left-context per eg (i.e. extra frames of input features
                  # not present in the output supervision).
right_context=4   # amount of right-context per eg.
left_context_initial=-1    # if >=0, left-context for first chunk of an utterance
right_context_final=-1     # if >=0, right-context for last chunk of an utterance
compress=true   # set this to false to disable compression (e.g. if you want to see whether
                # results are affected).
num_utts_subset=300     # number of utterances in validation and training
                        # subsets used for shrinkage and diagnostics.
num_utts_subset_valid=  # number of utterances in validation
                        # subsets used for shrinkage and diagnostics
                        # if provided, overrides num-utts-subset
num_utts_subset_train=  # number of utterances in training
                        # subsets used for shrinkage and diagnostics.
                        # if provided, overrides num-utts-subset
num_valid_frames_combine=0 # #valid frames for combination weights at the very end.
num_train_frames_combine=60000 # # train frames for the above.
num_frames_diagnostic=10000 # number of frames for "compute_prob" jobs
samples_per_iter=400000 # this is the target number of egs in each archive of egs
                        # (prior to merging egs).  We probably should have called
                        # it egs_per_iter. This is just a guideline; it will pick
                        # a number that divides the number of samples in the
                        # entire data.

stage=0
nj=6         # This should be set to the maximum number of jobs you are
             # comfortable to run in parallel; you can increase it if your disk
             # speed is greater and you have more machines.
srand=0
online_ivector_dir=  # can be used if we are including speaker information as iVectors.
cmvn_opts=  # can be used for specifying CMVN options, if feature type is not lda (if lda,
            # it doesn't make sense to use different options than were used as input to the
            # LDA transform).  This is used to turn off CMVN in the online-nnet experiments.
generate_egs_scp=false # If true, it will generate egs.JOB.*.scp per egs archive

echo "$0 $@"  # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;

if [ $# != 3 ]; then
  echo "Usage: $0 [opts] <data> <targets-scp> <egs-dir>"
  echo " e.g.: $0 data/train data/train/snr_targets.scp exp/tri4_nnet/egs"
  echo ""
  echo "Main options (for others, see top of script file)"
  echo "  --config <config-file>                           # config file containing options"
  echo "  --nj <nj>                                        # The maximum number of jobs you want to run in"
  echo "                                                   # parallel (increase this only if you have good disk and"
  echo "                                                   # network speed).  default=6"
  echo "  --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs."
  echo "  --samples-per-iter <#samples;400000>             # Target number of egs per archive (option is badly named)"
  echo "  --frames-per-eg <frames;8>                       # number of frames per eg on disk"
  echo "                                                   # May be either a single number or a comma-separated list"
  echo "                                                   # of alternatives (useful when training LSTMs, where the"
  echo "                                                   # frames-per-eg is the chunk size, to get variety of chunk"
  echo "                                                   # sizes).  The first in the list is preferred and is used"
  echo "                                                   # when working out the number of archives etc."
  echo "  --left-context <int;4>                           # Number of frames on left side to append for feature input"
  echo "  --right-context <int;4>                          # Number of frames on right side to append for feature input"
  echo "  --left-context-initial <int;-1>                  # If >= 0, left-context for first chunk of an utterance"
  echo "  --right-context-final <int;-1>                   # If >= 0, right-context for last chunk of an utterance"
  echo "  --num-frames-diagnostic <#frames;4000>           # Number of frames used in computing (train,valid) diagnostics"
  echo "  --num-valid-frames-combine <#frames;10000>       # Number of frames used in getting combination weights at the"
  echo "                                                   # very end."
  echo "  --stage <stage|0>                                # Used to run a partially-completed training process from somewhere in"
  echo "                                                   # the middle."

  exit 1;
fi

data=$1
targets_scp=$2
dir=$3

# Check some files.
[ ! -z "$online_ivector_dir" ] && \
  extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period"

for f in $data/feats.scp $targets_scp $extra_files; do
  [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done

sdata=$data/split$nj
utils/split_data.sh $data $nj

mkdir -p $dir/log $dir/info

[ -z "$num_utts_subset_valid" ] && num_utts_subset_valid=$num_utts_subset
[ -z "$num_utts_subset_train" ] && num_utts_subset_train=$num_utts_subset

num_utts=$(cat $data/utt2spk | wc -l)
if ! [ $num_utts -gt $[$num_utts_subset_valid*4] ]; then
  echo "$0: number of utterances $num_utts in your training data is too small versus --num-utts-subset=$num_utts_subset"
  echo "... you probably have so little data that it doesn't make sense to train a neural net."
  exit 1
fi

# Get list of validation utterances.
awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl 2>/dev/null | head -$num_utts_subset_valid | sort \
    > $dir/valid_uttlist

if [ -f $data/utt2uniq ]; then  # this matters if you use data augmentation.
  echo "File $data/utt2uniq exists, so augmenting valid_uttlist to"
  echo "include all perturbed versions of the same 'real' utterances."
  mv $dir/valid_uttlist $dir/valid_uttlist.tmp
  utils/utt2spk_to_spk2utt.pl $data/utt2uniq > $dir/uniq2utt
  cat $dir/valid_uttlist.tmp | utils/apply_map.pl $data/utt2uniq | \
    sort | uniq | utils/apply_map.pl $dir/uniq2utt | \
    awk '{for(n=1;n<=NF;n++) print $n;}' | sort  > $dir/valid_uttlist
  rm $dir/uniq2utt $dir/valid_uttlist.tmp
fi

awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid_uttlist | \
   utils/shuffle_list.pl 2>/dev/null | head -$num_utts_subset_train | sort > $dir/train_subset_uttlist

## Set up features.
echo "$0: feature type is raw"

feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |"
valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
echo $cmvn_opts >$dir/cmvn_opts # caution: the top-level nnet training script should copy this to its own dir now.

if [ ! -z "$online_ivector_dir" ]; then
  steps/nnet2/get_ivector_id.sh $online_ivector_dir > $dir/info/final.ie.id || exit 1
  ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1
  echo $ivector_dim > $dir/info/ivector_dim
  ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1;

  ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$ivector_period"
else
  ivector_opts=""
  echo 0 >$dir/info/ivector_dim
fi

if [ $stage -le 1 ]; then
  echo "$0: working out number of frames of training data"
  num_frames=$(steps/nnet2/get_num_frames.sh $data)
  echo $num_frames > $dir/info/num_frames
  echo "$0: working out feature dim"
  feats_one="$(echo $feats | sed s:JOB:1:g)"
  if feat_dim=$(feat-to-dim "$feats_one" - 2>/dev/null); then
    echo $feat_dim > $dir/info/feat_dim
  else # run without stderr redirection to show the error.
    feat-to-dim "$feats_one" -; exit 1
  fi
else
  num_frames=$(cat $dir/info/num_frames) || exit 1;
  feat_dim=$(cat $dir/info/feat_dim) || exit 1;
fi


# the first field in frames_per_eg (which is a comma-separated list of numbers)
# is the 'principal' frames-per-eg, and for purposes of working out the number
# of archives we assume that this will be the average number of frames per eg.
frames_per_eg_principal=$(echo $frames_per_eg | cut -d, -f1)

# the + 1 is to round up, not down... we assume it doesn't divide exactly.
num_archives=$[$num_frames/($frames_per_eg_principal*$samples_per_iter)+1]
if [ $num_archives -eq 1 ]; then
  echo "*** $0: warning: the --frames-per-eg is too large to generate one archive with"
  echo "*** as many as --samples-per-iter egs in it.  Consider reducing --frames-per-eg."
  sleep 4
fi

# We may have to first create a smaller number of larger archives, with number
# $num_archives_intermediate, if $num_archives is more than the maximum number
# of open filehandles that the system allows per process (ulimit -n).
# This sometimes gives a misleading answer as GridEngine sometimes changes the
# limit, so we limit it to 512.
max_open_filehandles=$(ulimit -n) || exit 1
[ $max_open_filehandles -gt 512 ] && max_open_filehandles=512
num_archives_intermediate=$num_archives
archives_multiple=1
while [ $[$num_archives_intermediate+4] -gt $max_open_filehandles ]; do
  archives_multiple=$[$archives_multiple+1]
  num_archives_intermediate=$[$num_archives/$archives_multiple+1];
done
# now make sure num_archives is an exact multiple of archives_multiple.
num_archives=$[$archives_multiple*$num_archives_intermediate]

echo $num_archives >$dir/info/num_archives
echo $frames_per_eg >$dir/info/frames_per_eg
# Work out the number of egs per archive
egs_per_archive=$[$num_frames/($frames_per_eg_principal*$num_archives)]
! [ $egs_per_archive -le $samples_per_iter ] && \
  echo "$0: script error: egs_per_archive=$egs_per_archive not <= samples_per_iter=$samples_per_iter" \
  && exit 1;

echo $egs_per_archive > $dir/info/egs_per_archive

echo "$0: creating $num_archives archives, each with $egs_per_archive egs, with"
echo "$0:   $frames_per_eg labels per example, and (left,right) context = ($left_context,$right_context)"
if [ $left_context_initial -ge 0 ] || [ $right_context_final -ge 0 ]; then
  echo "$0:   ... and (left-context-initial,right-context-final) = ($left_context_initial,$right_context_final)"
fi



if [ -e $dir/storage ]; then
  # Make soft links to storage directories, if distributing this way..  See
  # utils/create_split_dir.pl.
  echo "$0: creating data links"
  utils/create_data_link.pl $(for x in $(seq $num_archives); do echo $dir/egs.$x.ark; done)
  for x in $(seq $num_archives_intermediate); do
    utils/create_data_link.pl $(for y in $(seq $nj); do echo $dir/egs_orig.$y.$x.ark; done)
  done
fi

egs_opts="--left-context=$left_context --right-context=$right_context --compress=$compress --num-frames=$frames_per_eg"
[ $left_context_initial -ge 0 ] && egs_opts="$egs_opts --left-context-initial=$left_context_initial"
[ $right_context_final -ge 0 ] && egs_opts="$egs_opts --right-context-final=$right_context_final"

echo $left_context > $dir/info/left_context
echo $right_context > $dir/info/right_context
echo $left_context_initial > $dir/info/left_context_initial
echo $right_context_final > $dir/info/right_context_final

for n in `seq $nj`; do
  utils/filter_scp.pl $sdata/$n/utt2spk $targets_scp > $dir/targets.$n.scp
done

targets_scp_split=$dir/targets.JOB.scp

if [ $target_type == "dense" ]; then
  num_targets=$(feat-to-dim "scp:$targets_scp" - 2>/dev/null) || exit 1
fi

if [ -z "$num_targets" ]; then
  echo "$0: num-targets is not set"
  exit 1
fi

case $target_type in
  "dense")
    get_egs_program="nnet3-get-egs-dense-targets --num-targets=$num_targets"
    targets="scp,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $targets_scp_split |"
    valid_targets="scp,s,cs:utils/filter_scp.pl $dir/valid_uttlist $targets_scp |"
    train_subset_targets="scp,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $targets_scp |"
    ;;
  "sparse")
    get_egs_program="nnet3-get-egs --num-pdfs=$num_targets"
    targets="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $targets_scp_split | ali-to-post scp:- ark:- |"
    valid_targets="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $targets_scp | ali-to-post scp:- ark:- |"
    train_subset_targets="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $targets_scp | ali-to-post scp:- ark:- |"
    ;;
  default)
    echo "$0: Unknown --target-type $target_type. Choices are dense and sparse"
    exit 1
esac

if [ $stage -le 3 ]; then
  echo "$0: Getting validation and training subset examples."
  rm -f $dir/.error 2>/dev/null
  $cmd $dir/log/create_valid_subset.log \
    $get_egs_program --frame-subsampling-factor=$frame_subsampling_factor \
    --length-tolerance=$length_tolerance \
    $ivector_opts $egs_opts "$valid_feats" \
    "$valid_targets" \
    "ark:$dir/valid_all.egs" || touch $dir/.error &
  $cmd $dir/log/create_train_subset.log \
    $get_egs_program --frame-subsampling-factor=$frame_subsampling_factor \
    --length-tolerance=$length_tolerance \
    $ivector_opts $egs_opts "$train_subset_feats" \
    "$train_subset_targets" \
    "ark:$dir/train_subset_all.egs" || touch $dir/.error &
  wait;

  [ -f $dir/.error ] && echo "Error detected while creating train/valid egs" && exit 1
  echo "... Getting subsets of validation examples for diagnostics and combination."
  if $generate_egs_scp; then
    valid_diagnostic_output="ark,scp:$dir/valid_diagnostic.egs,$dir/valid_diagnostic.scp"
    train_diagnostic_output="ark,scp:$dir/train_diagnostic.egs,$dir/train_diagnostic.scp"
  else
    valid_diagnostic_output="ark:$dir/valid_diagnostic.egs"
    train_diagnostic_output="ark:$dir/train_diagnostic.egs"
  fi
  $cmd $dir/log/create_valid_subset_combine.log \
    nnet3-subset-egs --n=$[$num_valid_frames_combine/$frames_per_eg_principal] ark:$dir/valid_all.egs \
    ark:$dir/valid_combine.egs || touch $dir/.error &
  $cmd $dir/log/create_valid_subset_diagnostic.log \
    nnet3-subset-egs --n=$[$num_frames_diagnostic/$frames_per_eg_principal] ark:$dir/valid_all.egs \
    $valid_diagnostic_output || touch $dir/.error &

  $cmd $dir/log/create_train_subset_combine.log \
    nnet3-subset-egs --n=$[$num_train_frames_combine/$frames_per_eg_principal] ark:$dir/train_subset_all.egs \
    ark:$dir/train_combine.egs || touch $dir/.error &
  $cmd $dir/log/create_train_subset_diagnostic.log \
    nnet3-subset-egs --n=$[$num_frames_diagnostic/$frames_per_eg_principal] ark:$dir/train_subset_all.egs \
    $train_diagnostic_output || touch $dir/.error &
  wait
  sleep 5  # wait for file system to sync.
  cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs
  if $generate_egs_scp; then
    cat $dir/valid_combine.egs $dir/train_combine.egs  | \
    nnet3-copy-egs ark:- ark,scp:$dir/combine.egs,$dir/combine.scp
    rm $dir/{train,valid}_combine.scp
  else
    cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs
  fi
  for f in $dir/{combine,train_diagnostic,valid_diagnostic}.egs; do
    [ ! -s $f ] && echo "No examples in file $f" && exit 1;
  done
  rm $dir/valid_all.egs $dir/train_subset_all.egs $dir/{train,valid}_combine.egs
fi

if [ $stage -le 4 ]; then
  # create egs_orig.*.*.ark; the first index goes to $nj,
  # the second to $num_archives_intermediate.

  egs_list=
  for n in $(seq $num_archives_intermediate); do
    egs_list="$egs_list ark:$dir/egs_orig.JOB.$n.ark"
  done
  echo "$0: Generating training examples on disk"
  # The examples will go round-robin to egs_list.
  $cmd JOB=1:$nj $dir/log/get_egs.JOB.log \
    $get_egs_program --frame-subsampling-factor=$frame_subsampling_factor \
    --length-tolerance=$length_tolerance \
    $ivector_opts $egs_opts "$feats" "$targets" \
    ark:- \| \
    nnet3-copy-egs --random=true --srand=\$[JOB+$srand] ark:- $egs_list || exit 1;
fi

if [ $stage -le 5 ]; then
  echo "$0: recombining and shuffling order of archives on disk"
  # combine all the "egs_orig.*.JOB.scp" (over the $nj splits of the data) and
  # shuffle the order, writing to the egs.JOB.ark

  # the input is a concatenation over the input jobs.
  egs_list=
  for n in $(seq $nj); do
    egs_list="$egs_list $dir/egs_orig.$n.JOB.ark"
  done

  if [ $archives_multiple == 1 ]; then # normal case.
    if $generate_egs_scp; then
      output_archive="ark,scp:$dir/egs.JOB.ark,$dir/egs.JOB.scp"
    else
      output_archive="ark:$dir/egs.JOB.ark"
    fi
    $cmd --max-jobs-run $nj JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \
      nnet3-shuffle-egs --srand=\$[JOB+$srand] "ark:cat $egs_list|" $output_archive  || exit 1;

    if $generate_egs_scp; then
      #concatenate egs.JOB.scp in single egs.scp
      rm $dir/egs.scp 2> /dev/null || true
      for j in $(seq $num_archives_intermediate); do
        cat $dir/egs.$j.scp || exit 1;
      done > $dir/egs.scp || exit 1;
      for f in $dir/egs.*.scp; do rm $f; done
    fi
  else
    # we need to shuffle the 'intermediate archives' and then split into the
    # final archives.  we create soft links to manage this splitting, because
    # otherwise managing the output names is quite difficult (and we don't want
    # to submit separate queue jobs for each intermediate archive, because then
    # the --max-jobs-run option is hard to enforce).
    if $generate_egs_scp; then
      output_archives="$(for y in $(seq $archives_multiple); do echo ark,scp:$dir/egs.JOB.$y.ark,$dir/egs.JOB.$y.scp; done)"
    else
      output_archives="$(for y in $(seq $archives_multiple); do echo ark:$dir/egs.JOB.$y.ark; done)"
    fi
    for x in $(seq $num_archives_intermediate); do
      for y in $(seq $archives_multiple); do
        archive_index=$[($x-1)*$archives_multiple+$y]
        # egs.intermediate_archive.{1,2,...}.ark will point to egs.archive.ark
        ln -sf egs.$archive_index.ark $dir/egs.$x.$y.ark || exit 1
      done
    done
    $cmd --max-jobs-run $nj JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \
      nnet3-shuffle-egs --srand=\$[JOB+$srand] "ark:cat $egs_list|" ark:- \| \
      nnet3-copy-egs ark:- $output_archives || exit 1;

    if $generate_egs_scp; then
      #concatenate egs.JOB.scp in single egs.scp
      rm $dir/egs.scp 2> /dev/null || true
      for j in $(seq $num_archives_intermediate); do
        for y in $(seq $num_archives_intermediate); do
          cat $dir/egs.$j.$y.scp || exit 1;
        done
      done > $dir/egs.scp || exit 1;
      for f in $dir/egs.*.*.scp; do rm $f; done
    fi
  fi
fi

if [ $frame_subsampling_factor -ne 1 ]; then
  echo $frame_subsampling_factor > $dir/info/frame_subsampling_factor
fi

wait

if [ $stage -le 6 ]; then
  echo "$0: removing temporary archives"
  for x in $(seq $nj); do
    for y in $(seq $num_archives_intermediate); do
      file=$dir/egs_orig.$x.$y.ark
      [ -L $file ] && rm $(utils/make_absolute.sh $file)
      rm $file
    done
  done
  if [ $archives_multiple -gt 1 ]; then
    # there are some extra soft links that we should delete.
    for f in $dir/egs.*.*.ark; do rm $f; done
  fi
  echo "$0: removing temporary stuff"
  rm -f $dir/targets.*.scp 2>/dev/null
fi

echo "$0: Finished preparing training examples"