generate_plots.py
36.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
#!/usr/bin/env python
# Copyright 2016 Vijayaditya Peddinti
# 2016 Vimal Manohar
# Apache 2.0.
from __future__ import division
import argparse
import errno
import logging
import os
import re
import sys
import warnings
sys.path.insert(0, 'steps')
import libs.nnet3.report.log_parse as log_parse
import libs.common as common_lib
try:
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Rectangle
# matplotlib issue https://github.com/matplotlib/matplotlib/issues/12513
# plt.subplot() generates a false-positive warninig, suppress it for now.
from matplotlib.cbook import MatplotlibDeprecationWarning
warnings.filterwarnings('ignore', category=MatplotlibDeprecationWarning,
message='Adding an axes using the same arguments')
g_plot = True
except ImportError:
g_plot = False
logging.basicConfig(format="%(filename)s:%(lineno)s:%(levelname)s:%(message)s",
level=logging.INFO)
logger = logging.getLogger(__name__)
def get_args():
parser = argparse.ArgumentParser(
prog=sys.argv[0], # By default, prog is set this to filename only.
formatter_class=type('', (argparse.RawDescriptionHelpFormatter,
argparse.ArgumentDefaultsHelpFormatter), {}),
description="Parses the training logs and generates a variety of plots.\n"
"e.g.: %(prog)s \\\n"
" exp/nnet3/tdnn exp/nnet3/tdnn1 exp/nnet3/tdnn2 exp/nnet3/tdnn/report.\n"
"The report file 'report.pdf' will be generated in the <output_dir> directory.")
parser.add_argument("--start-iter", type=int, metavar='N', default=1,
help="Iteration from which plotting will start.")
parser.add_argument("--is-chain", type=common_lib.str_to_bool, default='false', metavar='BOOL',
help="Set to 'true' if <exp_dir>s contain chain models.")
parser.add_argument("--is-rnnlm", type=common_lib.str_to_bool, default='false', metavar='BOOL',
help="Set to 'true' if <exp_dir>s contain RNNLM.")
parser.add_argument("--output-nodes", type=str, metavar='NODES',
action=common_lib.NullstrToNoneAction,
help="List of space separated <output-node>:<objective-type> entries, "
"one for each output node")
parser.add_argument("--comparison-dir", type=str, metavar='DIR', action='append',
help="[DEPRECATED] Experiment directories for comparison. "
"These will only be used for plots, not tables.")
parser.add_argument("exp_dir", nargs='+',
help="The first <exp_dir> is the current experiment directory, e.g. "
"'exp/nnet3/tdnn'; the rest are up to 6 optional directories of other "
"experiments to be graphed on same plots for comparison.")
parser.add_argument("output_dir",
help="output directory for reports, e.g. 'exp/nnet3/tdnn/report'")
args = parser.parse_args()
if ((args.comparison_dir is not None and len(args.comparison_dir) > 6) or
(args.exp_dir is not None and len(args.exp_dir) > 7)):
raise Exception(
"Up to 6 comparison directories may be specified. "
"If you want to compare with more experiments, you would have to carefully tune "
"the plot_colors variable which specified colors used for plotting.")
assert args.start_iter >= 1
if args.is_chain and args.is_rnnlm:
raise Exception("Options --is-chain and --is-rnnlm cannot be both true.")
return args
g_plot_colors = ['red', 'blue', 'green', 'black', 'magenta', 'yellow', 'cyan']
class LatexReport(object):
"""Class for writing a Latex report"""
def __init__(self, pdf_file):
self.pdf_file = pdf_file
self.document = []
self.document.append(r"""
\documentclass[prl,10pt,twocolumn]{revtex4}
\usepackage{graphicx} % Used to import the graphics
\begin{document}
""")
def add_figure(self, figure_pdf, title):
"""we will have keep extending this replacement list based on errors
during compilation escaping underscores in the title"""
title = r"\texttt{"+re.sub("_", "\_", title)+"}"
fig_latex = r"""
%...
\newpage
\begin{figure}[h]
\begin{center}
\caption{""" + title + r"""}
\includegraphics[width=\textwidth]{""" + figure_pdf + r"""}
\end{center}
\end{figure}
\clearpage
%...
"""
self.document.append(fig_latex)
def close(self):
self.document.append(r"\end{document}")
return self.compile()
def compile(self):
root, ext = os.path.splitext(self.pdf_file)
dir_name = os.path.dirname(self.pdf_file)
latex_file = root + ".tex"
lat_file = open(latex_file, "w")
lat_file.write("\n".join(self.document))
lat_file.close()
logger.info("Compiling the LaTeX report.")
try:
common_lib.execute_command(
"pdflatex -interaction=batchmode "
"-output-directory={0} {1}".format(dir_name, latex_file))
except Exception as e:
logger.warning("There was an error compiling LaTeX file %s. "
"Check report.log generated by pdflatex in the same directory. %s",
latex_file, e)
return False
return True
def latex_compliant_name(name_string):
"""this function is required as latex does not allow all the component names
allowed by nnet3.
Identified incompatibilities :
1. latex does not allow dot(.) in file names
"""
node_name_string = re.sub("\.", "_dot_", name_string)
return node_name_string
def generate_acc_logprob_plots(exp_dir, output_dir, plot, key='accuracy',
file_basename='accuracy', comparison_dir=None,
start_iter=1, latex_report=None, output_name='output'):
assert start_iter >= 1
if plot:
fig = plt.figure()
plots = []
comparison_dir = [] if comparison_dir is None else comparison_dir
dirs = [exp_dir] + comparison_dir
index = 0
for dir in dirs:
[report, times, data] = log_parse.generate_acc_logprob_report(dir, key,
output_name)
if index == 0:
# this is the main experiment directory
with open("{0}/{1}.log".format(output_dir,
file_basename), "w") as f:
f.write(report)
if plot:
color_val = g_plot_colors[index]
data = np.array(data)
if data.shape[0] == 0:
logger.warning("Couldn't find any rows for the"
"accuracy/log-probability plot, not generating it")
return
data = data[data[:, 0] >= start_iter, :]
plot_handle, = plt.plot(data[:, 0], data[:, 1], color=color_val,
linestyle="--",
label="train {0}".format(dir))
plots.append(plot_handle)
plot_handle, = plt.plot(data[:, 0], data[:, 2], color=color_val,
label="valid {0}".format(dir))
plots.append(plot_handle)
index += 1
if plot:
plt.xlabel('Iteration')
plt.ylabel(key)
lgd = plt.legend(handles=plots, loc='lower center',
bbox_to_anchor=(0.5, -0.2 + len(dirs) * -0.1),
ncol=1, borderaxespad=0.)
plt.grid(True)
fig.suptitle("{0} plot for {1}".format(key, output_name))
figfile_name = '{0}/{1}_{2}.pdf'.format(
output_dir, file_basename,
latex_compliant_name(output_name))
plt.savefig(figfile_name, bbox_extra_artists=(lgd,),
bbox_inches='tight')
if latex_report is not None:
latex_report.add_figure(
figfile_name,
"Plot of {0} vs iterations for {1}".format(key, output_name))
# The name of five gates of lstmp
g_lstm_gate = ['i_t_sigmoid', 'f_t_sigmoid', 'c_t_tanh', 'o_t_sigmoid', 'm_t_tanh']
# The "extra" item is a placeholder. As each unit in python plot is
# composed by a legend_handle(linestyle) and a legend_label(description).
# For the unit which doesn't have linestyle, we use the "extra" placeholder.
if g_plot:
extra = Rectangle((0, 0), 1, 1, facecolor="w", fill=False, edgecolor='none', linewidth=0)
# This function is used to insert a column to the legend, the column_index is 1-based
def insert_a_column_legend(legend_handle, legend_label, lp, mp, hp,
dir, prefix_length, column_index):
handle = [extra, lp, mp, hp]
label = ["[1]{0}".format(dir[prefix_length:]), "", "", ""]
for row in range(1,5):
legend_handle.insert(column_index*row-1, handle[row-1])
legend_label.insert(column_index*row-1, label[row-1])
# This function is used to plot a normal nonlinearity component or a gate of lstmp
def plot_a_nonlin_component(fig, dirs, stat_tables_per_component_per_dir,
component_name, common_prefix, prefix_length, component_type,
start_iter, gate_index=0, with_oderiv=0):
fig.clf()
index = 0
legend_handle = [extra, extra, extra, extra]
legend_label = ["", '5th percentile', '50th percentile', '95th percentile']
if not with_oderiv:
for dir in dirs:
color_val = g_plot_colors[index]
index += 1
try:
iter_stats = (stat_tables_per_component_per_dir[dir][component_name])
except KeyError:
# this component is not available in this network so lets
# not just plot it
insert_a_column_legend(legend_handle, legend_label, lp, mp, hp,
dir, prefix_length, index+1)
continue
data = np.array(iter_stats)
data = data[data[:, 0] >= start_iter, :]
ax = plt.subplot(211)
lp, = ax.plot(data[:, 0], data[:, gate_index*10+5], color=color_val,
linestyle='--')
mp, = ax.plot(data[:, 0], data[:, gate_index*10+6], color=color_val,
linestyle='-')
hp, = ax.plot(data[:, 0], data[:, gate_index*10+7], color=color_val,
linestyle='--')
insert_a_column_legend(legend_handle, legend_label, lp, mp, hp,
dir, prefix_length, index+1)
ax.set_ylabel('Value-{0}'.format(component_type))
ax.grid(True)
ax = plt.subplot(212)
lp, = ax.plot(data[:, 0], data[:, gate_index*10+8], color=color_val,
linestyle='--')
mp, = ax.plot(data[:, 0], data[:, gate_index*10+9], color=color_val,
linestyle='-')
hp, = ax.plot(data[:, 0], data[:, gate_index*10+10], color=color_val,
linestyle='--')
ax.set_xlabel('Iteration')
ax.set_ylabel('Derivative-{0}'.format(component_type))
ax.grid(True)
lgd = plt.legend(legend_handle, legend_label, loc='lower center',
bbox_to_anchor=(0.5 , -0.5 + len(dirs) * -0.2),
ncol=4, handletextpad = -2, title="[1]:{0}".format(common_prefix),
borderaxespad=0.)
plt.grid(True)
else:
for dir in dirs:
color_val = g_plot_colors[index]
index += 1
try:
iter_stats = (stat_tables_per_component_per_dir[dir][component_name])
except KeyError:
# this component is not available in this network so lets
# not just plot it
insert_a_column_legend(legend_handle, legend_label, lp, mp, hp,
dir, prefix_length, index+1)
continue
data = np.array(iter_stats)
data = data[data[:, 0] >= start_iter, :]
ax = plt.subplot(311)
lp, = ax.plot(data[:, 0], data[:, gate_index*10+7], color=color_val,
linestyle='--')
mp, = ax.plot(data[:, 0], data[:, gate_index*10+8], color=color_val,
linestyle='-')
hp, = ax.plot(data[:, 0], data[:, gate_index*10+9], color=color_val,
linestyle='--')
insert_a_column_legend(legend_handle, legend_label, lp, mp, hp,
dir, prefix_length, index+1)
ax.set_ylabel('Value-{0}'.format(component_type))
ax.grid(True)
ax = plt.subplot(312)
lp, = ax.plot(data[:, 0], data[:, gate_index*10+10], color=color_val,
linestyle='--')
mp, = ax.plot(data[:, 0], data[:, gate_index*10+11], color=color_val,
linestyle='-')
hp, = ax.plot(data[:, 0], data[:, gate_index*10+12], color=color_val,
linestyle='--')
ax.set_ylabel('Derivative-{0}'.format(component_type))
ax.grid(True)
ax = plt.subplot(313)
lp, = ax.plot(data[:, 0], data[:, gate_index*10+13], color=color_val,
linestyle='--')
mp, = ax.plot(data[:, 0], data[:, gate_index*10+14], color=color_val,
linestyle='-')
hp, = ax.plot(data[:, 0], data[:, gate_index*10+15], color=color_val,
linestyle='--')
ax.set_xlabel('Iteration')
ax.set_ylabel('Oderivative-{0}'.format(component_type))
ax.grid(True)
plt.subplots_adjust(top=0.8, hspace = 1.0, bottom = -0.2)
lgd = plt.legend(legend_handle, legend_label, loc='lower center',
bbox_to_anchor=(0.5 , -1.5 + len(dirs) * -0.2),
ncol=4, handletextpad = -2, title="[1]:{0}".format(common_prefix),
borderaxespad=0.)
plt.grid(True)
return lgd
# This function is used to generate the statistic plots of nonlinearity component
# Mainly divided into the following steps:
# 1) With log_parse function, we get the statistics from each directory.
# 2) Convert the collected nonlinearity statistics into the tables. Each table
# contains all the statistics in each component of each directory.
# 3) The statistics of each component are stored into corresponding log files.
# Each line of the log file contains the statistics of one iteration.
# 4) Plot the "Per-dimension average-(value, derivative) percentiles" figure
# for each nonlinearity component.
def generate_nonlin_stats_plots(exp_dir, output_dir, plot, comparison_dir=None,
start_iter=1, latex_report=None):
assert start_iter >= 1
comparison_dir = [] if comparison_dir is None else comparison_dir
dirs = [exp_dir] + comparison_dir
index = 0
stats_per_dir = {}
with_oderiv = 0
for dir in dirs:
stats_per_component_per_iter = (
log_parse.parse_progress_logs_for_nonlinearity_stats(dir))
for key in stats_per_component_per_iter:
if len(stats_per_component_per_iter[key]['stats']) == 0:
logger.warning("Couldn't find any rows for the"
"nonlin stats plot, not generating it")
stats_per_dir[dir] = stats_per_component_per_iter
# convert the nonlin stats into tables
stat_tables_per_component_per_dir = {}
for dir in dirs:
stats_per_component_per_iter = stats_per_dir[dir]
component_names = stats_per_component_per_iter.keys()
stat_tables_per_component = {}
for component_name in component_names:
comp_data = stats_per_component_per_iter[component_name]
comp_type = comp_data['type']
comp_stats = comp_data['stats']
iters = sorted(comp_stats)
iter_stats = []
for iter in iters:
iter_stats.append([iter] + comp_stats[iter])
stat_tables_per_component[component_name] = iter_stats
stat_tables_per_component_per_dir[dir] = stat_tables_per_component
if len(comp_stats[iter]) == 15:
with_oderiv = 1
main_stat_tables = stat_tables_per_component_per_dir[exp_dir]
for component_name in main_stat_tables.keys():
# this is the main experiment directory
with open("{dir}/nonlinstats_{comp_name}.log".format(
dir=output_dir, comp_name=component_name), "w") as f:
if with_oderiv:
# with oderiv-rms
f.write("Iteration\tValueMean\tValueStddev\tDerivMean\tDerivStddev\t"
"OderivMean\tOderivStddev\t"
"Value_5th\tValue_50th\tValue_95th\t"
"Deriv_5th\tDeriv_50th\tDeriv_95th\t"
"Oderiv_5th\tOderiv_50th\tOderiv_95th\n")
else:
# without oderiv-rms
f.write("Iteration\tValueMean\tValueStddev\tDerivMean\tDerivStddev\t"
"Value_5th\tValue_50th\tValue_95th\t"
"Deriv_5th\tDeriv_50th\tDeriv_95th\n")
iter_stat_report = []
iter_stats = main_stat_tables[component_name]
for row in iter_stats:
iter_stat_report.append("\t".join([str(x) for x in row]))
f.write("\n".join(iter_stat_report))
f.close()
if plot:
main_component_names = sorted(main_stat_tables)
plot_component_names = set(main_component_names)
for dir in dirs:
component_names = set(stats_per_dir[dir].keys())
plot_component_names = plot_component_names.intersection(
component_names)
plot_component_names = sorted(plot_component_names)
if plot_component_names != main_component_names:
logger.warning("The components in all the neural networks in the "
"given experiment dirs are not the same, so comparison plots are "
"provided only for common component names. Make sure that these are "
"comparable experiments before analyzing these plots.")
fig = plt.figure()
common_prefix = os.path.commonprefix(dirs)
prefix_length = common_prefix.rfind('/')
common_prefix = common_prefix[0:prefix_length]
for component_name in main_component_names:
if stats_per_dir[exp_dir][component_name]['type'] == 'LstmNonlinearity':
for i in range(0,5):
component_type = 'Lstm-' + g_lstm_gate[i]
lgd = plot_a_nonlin_component(fig, dirs,
stat_tables_per_component_per_dir, component_name,
common_prefix, prefix_length, component_type, start_iter, i, with_oderiv)
fig.suptitle("Per-dimension average-(value, derivative) percentiles for "
"{component_name}-{gate}".format(component_name=component_name, gate=g_lstm_gate[i]))
comp_name = latex_compliant_name(component_name)
figfile_name = '{dir}/nonlinstats_{comp_name}_{gate}.pdf'.format(
dir=output_dir, comp_name=comp_name, gate=g_lstm_gate[i])
fig.savefig(figfile_name, bbox_extra_artists=(lgd,),
bbox_inches='tight')
if latex_report is not None:
latex_report.add_figure(
figfile_name,
"Per-dimension average-(value, derivative) percentiles for "
"{0}-{1}".format(component_name, g_lstm_gate[i]))
else:
component_type = stats_per_dir[exp_dir][component_name]['type']
lgd = plot_a_nonlin_component(fig, dirs,
stat_tables_per_component_per_dir,component_name,
common_prefix, prefix_length, component_type, start_iter, 0, with_oderiv)
if with_oderiv:
fig.suptitle("Per-dimension average-(value, derivative) and rms-oderivative percentiles for "
"{component_name}".format(component_name=component_name))
else:
fig.suptitle("Per-dimension average-(value, derivative) percentiles for "
"{component_name}".format(component_name=component_name))
comp_name = latex_compliant_name(component_name)
figfile_name = '{dir}/nonlinstats_{comp_name}.pdf'.format(
dir=output_dir, comp_name=comp_name)
fig.savefig(figfile_name, bbox_extra_artists=(lgd,),
bbox_inches='tight')
if latex_report is not None:
if with_oderiv:
latex_report.add_figure(
figfile_name,
"Per-dimension average-(value, derivative) and rms-oderivative percentiles for "
"{0}".format(component_name))
else:
latex_report.add_figure(
figfile_name,
"Per-dimension average-(value, derivative) percentiles for "
"{0}".format(component_name))
def generate_clipped_proportion_plots(exp_dir, output_dir, plot,
comparison_dir=None, start_iter=1,
latex_report=None):
assert(start_iter >= 1)
comparison_dir = [] if comparison_dir is None else comparison_dir
dirs = [exp_dir] + comparison_dir
index = 0
stats_per_dir = {}
for dir in dirs:
try:
stats_per_dir[dir] = (
log_parse.parse_progress_logs_for_clipped_proportion(dir))
except log_parse.MalformedClippedProportionLineException as e:
raise e
except common_lib.KaldiCommandException as e:
logger.warning("Could not extract the clipped proportions for %s, "
"this might be because there are no ClipGradientComponents.", dir)
continue
if len(stats_per_dir[dir]) == 0:
logger.warning("Couldn't find any rows for the"
"clipped proportion plot, not generating it")
try:
main_cp_stats = stats_per_dir[exp_dir]['table']
except KeyError:
logger.warning("The main experiment directory %s does not have clipped proportions. "
"Not generating clipped proportion plots.", exp_dir)
return
# this is the main experiment directory
file = open("{dir}/clipped_proportion.log".format(dir=output_dir), "w")
iter_stat_report = ""
for row in main_cp_stats:
iter_stat_report += "\t".join([str(x) for x in row]) + "\n"
file.write(iter_stat_report)
file.close()
if plot:
main_component_names = sorted(stats_per_dir[exp_dir]['cp_per_iter_per_component'])
plot_component_names = set(main_component_names)
for dir in dirs:
try:
component_names = set(stats_per_dir[dir]['cp_per_iter_per_component'])
plot_component_names = (
plot_component_names.intersection(component_names))
except KeyError:
continue
plot_component_names = sorted(plot_component_names)
if plot_component_names != main_component_names:
logger.warning(
"The components in all the neural networks in the given "
"experiment dirs are not the same, so comparison plots are "
"provided only for common component names. Make sure that these "
"are comparable experiments before analyzing these plots.")
fig = plt.figure()
for component_name in main_component_names:
fig.clf()
index = 0
plots = []
for dir in dirs:
color_val = g_plot_colors[index]
index += 1
try:
iter_stats = stats_per_dir[dir][
'cp_per_iter_per_component'][component_name]
except KeyError:
# this component is not available in this network so lets
# not just plot it
continue
data = np.array(iter_stats)
data = data[data[:, 0] >= start_iter, :]
ax = plt.subplot(111)
mp, = ax.plot(data[:, 0], data[:, 1], color=color_val,
label="Clipped Proportion {0}".format(dir))
plots.append(mp)
ax.set_ylabel('Clipped Proportion')
ax.set_ylim([0, 1.2])
ax.grid(True)
lgd = plt.legend(handles=plots, loc='lower center',
bbox_to_anchor=(0.5, -0.5 + len(dirs) * -0.2),
ncol=1, borderaxespad=0.)
plt.grid(True)
fig.suptitle("Clipped-proportion value at {comp_name}".format(
comp_name=component_name))
comp_name = latex_compliant_name(component_name)
figfile_name = '{dir}/clipped_proportion_{comp_name}.pdf'.format(
dir=output_dir, comp_name=comp_name)
fig.savefig(figfile_name, bbox_extra_artists=(lgd,),
bbox_inches='tight')
if latex_report is not None:
latex_report.add_figure(
figfile_name,
"Clipped proportion at {0}".format(component_name))
def generate_parameter_diff_plots(exp_dir, output_dir, plot,
comparison_dir=None, start_iter=1,
latex_report=None):
# Parameter changes
assert start_iter >= 1
comparison_dir = [] if comparison_dir is None else comparison_dir
dirs = [exp_dir] + comparison_dir
index = 0
stats_per_dir = {}
key_file = {"Parameter differences": "parameter.diff",
"Relative parameter differences": "relative_parameter.diff"}
stats_per_dir = {}
for dir in dirs:
stats_per_dir[dir] = {}
for key in key_file:
stats_per_dir[dir][key] = (
log_parse.parse_progress_logs_for_param_diff(dir, key))
# write down the stats for the main experiment directory
for diff_type in key_file:
with open("{0}/{1}".format(output_dir, key_file[diff_type]), "w") as f:
diff_per_component_per_iter = (
stats_per_dir[exp_dir][diff_type]['progress_per_component'])
component_names = (
stats_per_dir[exp_dir][diff_type]['component_names'])
max_iter = stats_per_dir[exp_dir][diff_type]['max_iter']
f.write(" ".join(["Iteration"] + component_names)+"\n")
total_missing_iterations = 0
gave_user_warning = False
for iter in range(max_iter + 1):
iter_data = [str(iter)]
for c in component_names:
try:
iter_data.append(
str(diff_per_component_per_iter[c][iter]))
except KeyError:
total_missing_iterations += 1
iter_data.append("NA")
if (float(total_missing_iterations)/len(component_names) > 20
and not gave_user_warning):
logger.warning("There are more than %.0f missing iterations per component. "
"Something might be wrong.",
float(total_missing_iterations)/ len(component_names))
gave_user_warning = True
f.write(" ".join(iter_data) + "\n")
if plot:
# get the component names
diff_type = list(key_file.keys())[0]
main_component_names = sorted(stats_per_dir[exp_dir][diff_type]['progress_per_component'])
plot_component_names = set(main_component_names)
for dir in dirs:
try:
component_names = set(stats_per_dir[dir][diff_type]['progress_per_component'])
plot_component_names = plot_component_names.intersection(component_names)
except KeyError:
continue
plot_component_names = sorted(plot_component_names)
if plot_component_names != main_component_names:
logger.warning("The components in all the neural networks in the "
"given experiment dirs are not the same, "
"so comparison plots are provided only for common "
"component names. "
"Make sure that these are comparable experiments "
"before analyzing these plots.")
assert main_component_names
fig = plt.figure()
logger.info("Plotting parameter differences for components: " +
", ".join(main_component_names))
for component_name in main_component_names:
fig.clf()
index = 0
plots = []
for dir in dirs:
color_val = g_plot_colors[index]
index += 1
iter_stats = []
try:
for diff_type in ['Parameter differences',
'Relative parameter differences']:
iter_stats.append(np.array(
sorted(stats_per_dir[dir][diff_type][
'progress_per_component'][
component_name].items())))
except KeyError as e:
# this component is not available in this network so lets
# not just plot it
if dir == exp_dir:
raise Exception("No parameter differences were available even in the main "
"experiment dir for the component {0}. Something went "
"wrong: {1}.".format(component_name, e))
continue
ax = plt.subplot(211)
mp, = ax.plot(iter_stats[0][:, 0], iter_stats[0][:, 1],
color=color_val,
label="Parameter Differences {0}".format(dir))
plots.append(mp)
ax.set_ylabel('Parameter Differences')
ax.grid(True)
ax = plt.subplot(212)
mp, = ax.plot(iter_stats[1][:, 0], iter_stats[1][:, 1],
color=color_val,
label="Relative Parameter "
"Differences {0}".format(dir))
ax.set_xlabel('Iteration')
ax.set_ylabel('Relative Parameter Differences')
ax.grid(True)
lgd = plt.legend(handles=plots, loc='lower center',
bbox_to_anchor=(0.5, -0.5 + len(dirs) * -0.2),
ncol=1, borderaxespad=0.)
plt.grid(True)
fig.suptitle("Parameter differences at {comp_name}".format(
comp_name=component_name))
comp_name = latex_compliant_name(component_name)
figfile_name = '{dir}/param_diff_{comp_name}.pdf'.format(
dir=output_dir, comp_name=comp_name)
fig.savefig(figfile_name, bbox_extra_artists=(lgd,),
bbox_inches='tight')
if latex_report is not None:
latex_report.add_figure(
figfile_name,
"Parameter differences at {0}".format(component_name))
def generate_plots(exp_dir, output_dir, output_names, comparison_dir=None,
start_iter=1):
try:
os.makedirs(output_dir)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(output_dir):
pass
else:
raise e
if g_plot:
latex_report = LatexReport("{0}/report.pdf".format(output_dir))
else:
latex_report = None
for (output_name, objective_type) in output_names:
if objective_type == "linear":
logger.info("Generating accuracy plots for '%s'", output_name)
generate_acc_logprob_plots(
exp_dir, output_dir, g_plot, key='accuracy',
file_basename='accuracy', comparison_dir=comparison_dir,
start_iter=start_iter,
latex_report=latex_report, output_name=output_name)
logger.info("Generating log-likelihood plots for '%s'", output_name)
generate_acc_logprob_plots(
exp_dir, output_dir, g_plot, key='log-likelihood',
file_basename='loglikelihood', comparison_dir=comparison_dir,
start_iter=start_iter,
latex_report=latex_report, output_name=output_name)
elif objective_type == "chain":
logger.info("Generating log-probability plots for '%s'", output_name)
generate_acc_logprob_plots(
exp_dir, output_dir, g_plot,
key='log-probability', file_basename='log_probability',
comparison_dir=comparison_dir, start_iter=start_iter,
latex_report=latex_report, output_name=output_name)
elif objective_type == "rnnlm_objective":
logger.info("Generating RNNLM objective plots for '%s'", output_name)
generate_acc_logprob_plots(
exp_dir, output_dir, g_plot, key='rnnlm_objective',
file_basename='objective', comparison_dir=comparison_dir,
start_iter=start_iter,
latex_report=latex_report, output_name=output_name)
else:
logger.info("Generating %s objective plots for '%s'", objective_type, output_name)
generate_acc_logprob_plots(
exp_dir, output_dir, g_plot, key='objective',
file_basename='objective', comparison_dir=comparison_dir,
start_iter=start_iter,
latex_report=latex_report, output_name=output_name)
logger.info("Generating non-linearity stats plots")
generate_nonlin_stats_plots(
exp_dir, output_dir, g_plot, comparison_dir=comparison_dir,
start_iter=start_iter, latex_report=latex_report)
logger.info("Generating clipped-proportion plots")
generate_clipped_proportion_plots(
exp_dir, output_dir, g_plot, comparison_dir=comparison_dir,
start_iter=start_iter, latex_report=latex_report)
logger.info("Generating parameter difference plots")
generate_parameter_diff_plots(
exp_dir, output_dir, g_plot, comparison_dir=comparison_dir,
start_iter=start_iter, latex_report=latex_report)
if g_plot and latex_report is not None:
has_compiled = latex_report.close()
if has_compiled:
logger.info("Report file %s/report.pdf has been generated successfully.", output_dir)
def main():
args = get_args()
if not g_plot:
logger.warning(
"This script requires matplotlib and numpy.\n"
"... Install these packages to generate plots.\n"
"... If you are on a cluster where you do not have admin rights, use venv.\n"
"... Generating text data table files only.")
output_nodes = []
if args.output_nodes is not None:
nodes = args.output_nodes.split(' ')
for n in nodes:
parts = n.split(':')
assert len(parts) == 2
output_nodes.append(tuple(parts))
elif args.is_chain:
output_nodes.append(('output', 'chain'))
output_nodes.append(('output-xent', 'chain'))
elif args.is_rnnlm:
output_nodes.append(('output', 'rnnlm_objective'))
else:
output_nodes.append(('output', 'linear'))
if args.comparison_dir is not None:
generate_plots(args.exp_dir[0], args.output_dir, output_nodes,
comparison_dir=args.comparison_dir,
start_iter=args.start_iter)
else:
if len(args.exp_dir) == 1:
generate_plots(args.exp_dir[0], args.output_dir, output_nodes,
start_iter=args.start_iter)
if len(args.exp_dir) > 1:
generate_plots(args.exp_dir[0], args.output_dir, output_nodes,
comparison_dir=args.exp_dir[1:],
start_iter=args.start_iter)
if __name__ == "__main__":
main()