make_configs.py
31.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
#!/usr/bin/env python
# This script is deprecated, please use ../xconfig_to_configs.py
# we're using python 3.x style print but want it to work in python 2.x,
from __future__ import print_function
from __future__ import division
import os
import argparse
import shlex
import sys
import warnings
import copy
import imp
import ast
nodes = imp.load_source('', 'steps/nnet3/components.py')
sys.path.insert(0, 'steps')
import libs.common as common_lib
def GetArgs():
# we add compulsary arguments as named arguments for readability
parser = argparse.ArgumentParser(description="Writes config files and variables "
"for TDNNs creation and training",
epilog="See steps/nnet3/tdnn/train.sh for example.")
# Only one of these arguments can be specified, and one of them has to
# be compulsarily specified
feat_group = parser.add_mutually_exclusive_group(required = True)
feat_group.add_argument("--feat-dim", type=int,
help="Raw feature dimension, e.g. 13")
feat_group.add_argument("--feat-dir", type=str,
help="Feature directory, from which we derive the feat-dim")
# only one of these arguments can be specified
ivector_group = parser.add_mutually_exclusive_group(required = False)
ivector_group.add_argument("--ivector-dim", type=int,
help="iVector dimension, e.g. 100", default=0)
ivector_group.add_argument("--ivector-dir", type=str,
help="iVector dir, which will be used to derive the ivector-dim ", default=None)
num_target_group = parser.add_mutually_exclusive_group(required = True)
num_target_group.add_argument("--num-targets", type=int,
help="number of network targets (e.g. num-pdf-ids/num-leaves)")
num_target_group.add_argument("--ali-dir", type=str,
help="alignment directory, from which we derive the num-targets")
num_target_group.add_argument("--tree-dir", type=str,
help="directory with final.mdl, from which we derive the num-targets")
# CNN options
parser.add_argument('--cnn.layer', type=str, action='append', dest = "cnn_layer",
help="CNN parameters at each CNN layer, e.g. --filt-x-dim=3 --filt-y-dim=8 "
"--filt-x-step=1 --filt-y-step=1 --num-filters=256 --pool-x-size=1 --pool-y-size=3 "
"--pool-z-size=1 --pool-x-step=1 --pool-y-step=3 --pool-z-step=1, "
"when CNN layers are used, no LDA will be added", default = None)
parser.add_argument("--cnn.bottleneck-dim", type=int, dest = "cnn_bottleneck_dim",
help="Output dimension of the linear layer at the CNN output "
"for dimension reduction, e.g. 256."
"The default zero means this layer is not needed.", default=0)
parser.add_argument("--cnn.cepstral-lifter", type=float, dest = "cepstral_lifter",
help="The factor used for determining the liftering vector in the production of MFCC. "
"User has to ensure that it matches the lifter used in MFCC generation, "
"e.g. 22.0", default=22.0)
# General neural network options
parser.add_argument("--splice-indexes", type=str, required = True,
help="Splice indexes at each layer, e.g. '-3,-2,-1,0,1,2,3' "
"If CNN layers are used the first set of splice indexes will be used as input "
"to the first CNN layer and later splice indexes will be interpreted as indexes "
"for the TDNNs.")
parser.add_argument("--add-lda", type=str, action=common_lib.StrToBoolAction,
help="If \"true\" an LDA matrix computed from the input features "
"(spliced according to the first set of splice-indexes) will be used as "
"the first Affine layer. This affine layer's parameters are fixed during training. "
"If --cnn.layer is specified this option will be forced to \"false\".",
default=True, choices = ["false", "true"])
parser.add_argument("--include-log-softmax", type=str, action=common_lib.StrToBoolAction,
help="add the final softmax layer ", default=True, choices = ["false", "true"])
parser.add_argument("--add-final-sigmoid", type=str, action=common_lib.StrToBoolAction,
help="add a final sigmoid layer as alternate to log-softmax-layer. "
"Can only be used if include-log-softmax is false. "
"This is useful in cases where you want the output to be "
"like probabilities between 0 and 1. Typically the nnet "
"is trained with an objective such as quadratic",
default=False, choices = ["false", "true"])
parser.add_argument("--objective-type", type=str,
help = "the type of objective; i.e. quadratic or linear",
default="linear", choices = ["linear", "quadratic"])
parser.add_argument("--xent-regularize", type=float,
help="For chain models, if nonzero, add a separate output for cross-entropy "
"regularization (with learning-rate-factor equal to the inverse of this)",
default=0.0)
parser.add_argument("--xent-separate-forward-affine", type=str, action=common_lib.StrToBoolAction,
help="if using --xent-regularize, gives it separate last-but-one weight matrix",
default=False, choices = ["false", "true"])
parser.add_argument("--final-layer-normalize-target", type=float,
help="RMS target for final layer (set to <1 if final layer learns too fast",
default=1.0)
parser.add_argument("--max-change-per-component", type=float,
help="Enforces per-component max change (except for the final affine layer). "
"if 0 it would not be enforced.", default=0.75)
parser.add_argument("--max-change-per-component-final", type=float,
help="Enforces per-component max change for the final affine layer. "
"if 0 it would not be enforced.", default=1.5)
parser.add_argument("--subset-dim", type=int, default=0,
help="dimension of the subset of units to be sent to the central frame")
parser.add_argument("--pnorm-input-dim", type=int,
help="input dimension to p-norm nonlinearities")
parser.add_argument("--pnorm-output-dim", type=int,
help="output dimension of p-norm nonlinearities")
relu_dim_group = parser.add_mutually_exclusive_group(required = False)
relu_dim_group.add_argument("--relu-dim", type=int,
help="dimension of all ReLU nonlinearity layers")
relu_dim_group.add_argument("--relu-dim-final", type=int,
help="dimension of the last ReLU nonlinearity layer. Dimensions increase geometrically from the first through the last ReLU layer.", default=None)
parser.add_argument("--relu-dim-init", type=int,
help="dimension of the first ReLU nonlinearity layer. Dimensions increase geometrically from the first through the last ReLU layer.", default=None)
parser.add_argument("--self-repair-scale-nonlinearity", type=float,
help="A non-zero value activates the self-repair mechanism in the sigmoid and tanh non-linearities of the LSTM", default=None)
parser.add_argument("--use-presoftmax-prior-scale", type=str, action=common_lib.StrToBoolAction,
help="if true, a presoftmax-prior-scale is added",
choices=['true', 'false'], default = True)
parser.add_argument("config_dir",
help="Directory to write config files and variables")
print(' '.join(sys.argv))
args = parser.parse_args()
args = CheckArgs(args)
return args
def CheckArgs(args):
if not os.path.exists(args.config_dir):
os.makedirs(args.config_dir)
## Check arguments.
if args.feat_dir is not None:
args.feat_dim = common_lib.get_feat_dim(args.feat_dir)
if args.ali_dir is not None:
args.num_targets = common_lib.get_number_of_leaves_from_tree(args.ali_dir)
elif args.tree_dir is not None:
args.num_targets = common_lib.get_number_of_leaves_from_tree(args.tree_dir)
if args.ivector_dir is not None:
args.ivector_dim = common_lib.get_ivector_dim(args.ivector_dir)
if not args.feat_dim > 0:
raise Exception("feat-dim has to be postive")
if not args.num_targets > 0:
print(args.num_targets)
raise Exception("num_targets has to be positive")
if not args.ivector_dim >= 0:
raise Exception("ivector-dim has to be non-negative")
if (args.subset_dim < 0):
raise Exception("--subset-dim has to be non-negative")
if not args.relu_dim is None:
if not args.pnorm_input_dim is None or not args.pnorm_output_dim is None or not args.relu_dim_init is None:
raise Exception("--relu-dim argument not compatible with "
"--pnorm-input-dim or --pnorm-output-dim or --relu-dim-init options");
args.nonlin_input_dim = args.relu_dim
args.nonlin_output_dim = args.relu_dim
args.nonlin_output_dim_final = None
args.nonlin_output_dim_init = None
args.nonlin_type = 'relu'
elif not args.relu_dim_final is None:
if not args.pnorm_input_dim is None or not args.pnorm_output_dim is None:
raise Exception("--relu-dim-final argument not compatible with "
"--pnorm-input-dim or --pnorm-output-dim options")
if args.relu_dim_init is None:
raise Exception("--relu-dim-init argument should also be provided with --relu-dim-final")
if args.relu_dim_init > args.relu_dim_final:
raise Exception("--relu-dim-init has to be no larger than --relu-dim-final")
args.nonlin_input_dim = None
args.nonlin_output_dim = None
args.nonlin_output_dim_final = args.relu_dim_final
args.nonlin_output_dim_init = args.relu_dim_init
args.nonlin_type = 'relu'
else:
if not args.relu_dim_init is None:
raise Exception("--relu-dim-final argument not compatible with "
"--pnorm-input-dim or --pnorm-output-dim options")
if not args.pnorm_input_dim > 0 or not args.pnorm_output_dim > 0:
raise Exception("--relu-dim not set, so expected --pnorm-input-dim and "
"--pnorm-output-dim to be provided.");
args.nonlin_input_dim = args.pnorm_input_dim
args.nonlin_output_dim = args.pnorm_output_dim
if (args.nonlin_input_dim < args.nonlin_output_dim) or (args.nonlin_input_dim % args.nonlin_output_dim != 0):
raise Exception("Invalid --pnorm-input-dim {0} and --pnorm-output-dim {1}".format(args.nonlin_input_dim, args.nonlin_output_dim))
args.nonlin_output_dim_final = None
args.nonlin_output_dim_init = None
args.nonlin_type = 'pnorm'
if args.add_final_sigmoid and args.include_log_softmax:
raise Exception("--include-log-softmax and --add-final-sigmoid cannot both be true.")
if args.xent_separate_forward_affine and args.add_final_sigmoid:
raise Exception("It does not make sense to have --add-final-sigmoid=true when xent-separate-forward-affine is true")
if args.add_lda and args.cnn_layer is not None:
args.add_lda = False
warnings.warn("--add-lda is set to false as CNN layers are used.")
if not args.max_change_per_component >= 0 or not args.max_change_per_component_final >= 0:
raise Exception("max-change-per-component and max_change-per-component-final should be non-negative")
return args
def AddConvMaxpLayer(config_lines, name, input, args):
if '3d-dim' not in input:
raise Exception("The input to AddConvMaxpLayer() needs '3d-dim' parameters.")
input = nodes.AddConvolutionLayer(config_lines, name, input,
input['3d-dim'][0], input['3d-dim'][1], input['3d-dim'][2],
args.filt_x_dim, args.filt_y_dim,
args.filt_x_step, args.filt_y_step,
args.num_filters, input['vectorization'])
if args.pool_x_size > 1 or args.pool_y_size > 1 or args.pool_z_size > 1:
input = nodes.AddMaxpoolingLayer(config_lines, name, input,
input['3d-dim'][0], input['3d-dim'][1], input['3d-dim'][2],
args.pool_x_size, args.pool_y_size, args.pool_z_size,
args.pool_x_step, args.pool_y_step, args.pool_z_step)
return input
# The ivectors are processed through an affine layer parallel to the CNN layers,
# then concatenated with the CNN output and passed to the deeper part of the network.
def AddCnnLayers(config_lines, cnn_layer, cnn_bottleneck_dim, cepstral_lifter, config_dir, feat_dim, splice_indexes=[0], ivector_dim=0):
cnn_args = ParseCnnString(cnn_layer)
num_cnn_layers = len(cnn_args)
# We use an Idct layer here to convert MFCC to FBANK features
common_lib.write_idct_matrix(feat_dim, cepstral_lifter, config_dir.strip() + "/idct.mat")
prev_layer_output = {'descriptor': "input",
'dimension': feat_dim}
prev_layer_output = nodes.AddFixedAffineLayer(config_lines, "Idct", prev_layer_output, config_dir.strip() + '/idct.mat')
list = [('Offset({0}, {1})'.format(prev_layer_output['descriptor'],n) if n != 0 else prev_layer_output['descriptor']) for n in splice_indexes]
splice_descriptor = "Append({0})".format(", ".join(list))
cnn_input_dim = len(splice_indexes) * feat_dim
prev_layer_output = {'descriptor': splice_descriptor,
'dimension': cnn_input_dim,
'3d-dim': [len(splice_indexes), feat_dim, 1],
'vectorization': 'yzx'}
for cl in range(0, num_cnn_layers):
prev_layer_output = AddConvMaxpLayer(config_lines, "L{0}".format(cl), prev_layer_output, cnn_args[cl])
if cnn_bottleneck_dim > 0:
prev_layer_output = nodes.AddAffineLayer(config_lines, "cnn-bottleneck", prev_layer_output, cnn_bottleneck_dim, "")
if ivector_dim > 0:
iv_layer_output = {'descriptor': 'ReplaceIndex(ivector, t, 0)',
'dimension': ivector_dim}
iv_layer_output = nodes.AddAffineLayer(config_lines, "ivector", iv_layer_output, ivector_dim, "")
prev_layer_output['descriptor'] = 'Append({0}, {1})'.format(prev_layer_output['descriptor'], iv_layer_output['descriptor'])
prev_layer_output['dimension'] = prev_layer_output['dimension'] + iv_layer_output['dimension']
return prev_layer_output
def PrintConfig(file_name, config_lines):
f = open(file_name, 'w')
f.write("\n".join(config_lines['components'])+"\n")
f.write("\n#Component nodes\n")
f.write("\n".join(config_lines['component-nodes'])+"\n")
f.close()
def ParseCnnString(cnn_param_string_list):
cnn_parser = argparse.ArgumentParser(description="cnn argument parser")
cnn_parser.add_argument("--filt-x-dim", required=True, type=int)
cnn_parser.add_argument("--filt-y-dim", required=True, type=int)
cnn_parser.add_argument("--filt-x-step", type=int, default = 1)
cnn_parser.add_argument("--filt-y-step", type=int, default = 1)
cnn_parser.add_argument("--num-filters", required=True, type=int)
cnn_parser.add_argument("--pool-x-size", type=int, default = 1)
cnn_parser.add_argument("--pool-y-size", type=int, default = 1)
cnn_parser.add_argument("--pool-z-size", type=int, default = 1)
cnn_parser.add_argument("--pool-x-step", type=int, default = 1)
cnn_parser.add_argument("--pool-y-step", type=int, default = 1)
cnn_parser.add_argument("--pool-z-step", type=int, default = 1)
cnn_args = []
for cl in range(0, len(cnn_param_string_list)):
cnn_args.append(cnn_parser.parse_args(shlex.split(cnn_param_string_list[cl])))
return cnn_args
def ParseSpliceString(splice_indexes):
splice_array = []
left_context = 0
right_context = 0
split1 = splice_indexes.split(); # we already checked the string is nonempty.
if len(split1) < 1:
raise Exception("invalid splice-indexes argument, too short: "
+ splice_indexes)
try:
for string in split1:
split2 = string.split(",")
if len(split2) < 1:
raise Exception("invalid splice-indexes argument, too-short element: "
+ splice_indexes)
int_list = []
for int_str in split2:
int_list.append(int(int_str))
if not int_list == sorted(int_list):
raise Exception("elements of splice-indexes must be sorted: "
+ splice_indexes)
left_context += -int_list[0]
right_context += int_list[-1]
splice_array.append(int_list)
except ValueError as e:
raise Exception("invalid splice-indexes argument " + splice_indexes + str(e))
left_context = max(0, left_context)
right_context = max(0, right_context)
return {'left_context':left_context,
'right_context':right_context,
'splice_indexes':splice_array,
'num_hidden_layers':len(splice_array)
}
# The function signature of MakeConfigs is changed frequently as it is intended for local use in this script.
def MakeConfigs(config_dir, splice_indexes_string,
cnn_layer, cnn_bottleneck_dim, cepstral_lifter,
feat_dim, ivector_dim, num_targets, add_lda,
nonlin_type, nonlin_input_dim, nonlin_output_dim, subset_dim,
nonlin_output_dim_init, nonlin_output_dim_final,
use_presoftmax_prior_scale,
final_layer_normalize_target,
include_log_softmax,
add_final_sigmoid,
xent_regularize,
xent_separate_forward_affine,
self_repair_scale,
max_change_per_component, max_change_per_component_final,
objective_type):
parsed_splice_output = ParseSpliceString(splice_indexes_string.strip())
left_context = parsed_splice_output['left_context']
right_context = parsed_splice_output['right_context']
num_hidden_layers = parsed_splice_output['num_hidden_layers']
splice_indexes = parsed_splice_output['splice_indexes']
input_dim = len(parsed_splice_output['splice_indexes'][0]) + feat_dim + ivector_dim
if xent_separate_forward_affine:
if splice_indexes[-1] != [0]:
raise Exception("--xent-separate-forward-affine option is supported only if the last-hidden layer has no splicing before it. Please use a splice-indexes with just 0 as the final splicing config.")
prior_scale_file = '{0}/presoftmax_prior_scale.vec'.format(config_dir)
config_lines = {'components':[], 'component-nodes':[]}
config_files={}
prev_layer_output = nodes.AddInputLayer(config_lines, feat_dim, splice_indexes[0], ivector_dim)
# Add the init config lines for estimating the preconditioning matrices
init_config_lines = copy.deepcopy(config_lines)
init_config_lines['components'].insert(0, '# Config file for initializing neural network prior to')
init_config_lines['components'].insert(0, '# preconditioning matrix computation')
nodes.AddOutputLayer(init_config_lines, prev_layer_output)
config_files[config_dir + '/init.config'] = init_config_lines
if cnn_layer is not None:
prev_layer_output = AddCnnLayers(config_lines, cnn_layer, cnn_bottleneck_dim, cepstral_lifter, config_dir,
feat_dim, splice_indexes[0], ivector_dim)
if add_lda:
prev_layer_output = nodes.AddLdaLayer(config_lines, "L0", prev_layer_output, config_dir + '/lda.mat')
left_context = 0
right_context = 0
# we moved the first splice layer to before the LDA..
# so the input to the first affine layer is going to [0] index
splice_indexes[0] = [0]
if not nonlin_output_dim is None:
nonlin_output_dims = [nonlin_output_dim] * num_hidden_layers
elif nonlin_output_dim_init < nonlin_output_dim_final and num_hidden_layers == 1:
raise Exception("num-hidden-layers has to be greater than 1 if relu-dim-init and relu-dim-final is different.")
else:
# computes relu-dim for each hidden layer. They increase geometrically across layers
factor = pow(float(nonlin_output_dim_final) / nonlin_output_dim_init, 1.0 / (num_hidden_layers - 1)) if num_hidden_layers > 1 else 1
nonlin_output_dims = [int(round(nonlin_output_dim_init * pow(factor, i))) for i in range(0, num_hidden_layers)]
assert(nonlin_output_dims[-1] >= nonlin_output_dim_final - 1 and nonlin_output_dims[-1] <= nonlin_output_dim_final + 1) # due to rounding error
nonlin_output_dims[-1] = nonlin_output_dim_final # It ensures that the dim of the last hidden layer is exactly the same as what is specified
for i in range(0, num_hidden_layers):
# make the intermediate config file for layerwise discriminative training
# prepare the spliced input
if not (len(splice_indexes[i]) == 1 and splice_indexes[i][0] == 0):
try:
zero_index = splice_indexes[i].index(0)
except ValueError:
zero_index = None
# I just assume the prev_layer_output_descriptor is a simple forwarding descriptor
prev_layer_output_descriptor = prev_layer_output['descriptor']
subset_output = prev_layer_output
if subset_dim > 0:
# if subset_dim is specified the script expects a zero in the splice indexes
assert(zero_index is not None)
subset_node_config = "dim-range-node name=Tdnn_input_{0} input-node={1} dim-offset={2} dim={3}".format(i, prev_layer_output_descriptor, 0, subset_dim)
subset_output = {'descriptor' : 'Tdnn_input_{0}'.format(i),
'dimension' : subset_dim}
config_lines['component-nodes'].append(subset_node_config)
appended_descriptors = []
appended_dimension = 0
for j in range(len(splice_indexes[i])):
if j == zero_index:
appended_descriptors.append(prev_layer_output['descriptor'])
appended_dimension += prev_layer_output['dimension']
continue
appended_descriptors.append('Offset({0}, {1})'.format(subset_output['descriptor'], splice_indexes[i][j]))
appended_dimension += subset_output['dimension']
prev_layer_output = {'descriptor' : "Append({0})".format(" , ".join(appended_descriptors)),
'dimension' : appended_dimension}
else:
# this is a normal affine node
pass
if xent_separate_forward_affine and i == num_hidden_layers - 1:
if xent_regularize == 0.0:
raise Exception("xent-separate-forward-affine=True is valid only if xent-regularize is non-zero")
if nonlin_type == "relu" :
prev_layer_output_chain = nodes.AddAffRelNormLayer(config_lines, "Tdnn_pre_final_chain",
prev_layer_output, nonlin_output_dim,
norm_target_rms = final_layer_normalize_target,
self_repair_scale = self_repair_scale,
max_change_per_component = max_change_per_component)
prev_layer_output_xent = nodes.AddAffRelNormLayer(config_lines, "Tdnn_pre_final_xent",
prev_layer_output, nonlin_output_dim,
norm_target_rms = final_layer_normalize_target,
self_repair_scale = self_repair_scale,
max_change_per_component = max_change_per_component)
elif nonlin_type == "pnorm" :
prev_layer_output_chain = nodes.AddAffPnormLayer(config_lines, "Tdnn_pre_final_chain",
prev_layer_output, nonlin_input_dim, nonlin_output_dim,
norm_target_rms = final_layer_normalize_target)
prev_layer_output_xent = nodes.AddAffPnormLayer(config_lines, "Tdnn_pre_final_xent",
prev_layer_output, nonlin_input_dim, nonlin_output_dim,
norm_target_rms = final_layer_normalize_target)
else:
raise Exception("Unknown nonlinearity type")
nodes.AddFinalLayer(config_lines, prev_layer_output_chain, num_targets,
max_change_per_component = max_change_per_component_final,
use_presoftmax_prior_scale = use_presoftmax_prior_scale,
prior_scale_file = prior_scale_file,
include_log_softmax = include_log_softmax)
nodes.AddFinalLayer(config_lines, prev_layer_output_xent, num_targets,
ng_affine_options = " param-stddev=0 bias-stddev=0 learning-rate-factor={0} ".format(
0.5 / xent_regularize),
max_change_per_component = max_change_per_component_final,
use_presoftmax_prior_scale = use_presoftmax_prior_scale,
prior_scale_file = prior_scale_file,
include_log_softmax = True,
name_affix = 'xent')
else:
if nonlin_type == "relu":
prev_layer_output = nodes.AddAffRelNormLayer(config_lines, "Tdnn_{0}".format(i),
prev_layer_output, nonlin_output_dims[i],
norm_target_rms = 1.0 if i < num_hidden_layers -1 else final_layer_normalize_target,
self_repair_scale = self_repair_scale,
max_change_per_component = max_change_per_component)
elif nonlin_type == "pnorm":
prev_layer_output = nodes.AddAffPnormLayer(config_lines, "Tdnn_{0}".format(i),
prev_layer_output, nonlin_input_dim, nonlin_output_dim,
norm_target_rms = 1.0 if i < num_hidden_layers -1 else final_layer_normalize_target)
else:
raise Exception("Unknown nonlinearity type")
# a final layer is added after each new layer as we are generating
# configs for layer-wise discriminative training
# add_final_sigmoid adds a sigmoid as a final layer as alternative
# to log-softmax layer.
# http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression#Softmax_Regression_vs._k_Binary_Classifiers
# This is useful when you need the final outputs to be probabilities between 0 and 1.
# Usually used with an objective-type such as "quadratic".
# Applications are k-binary classification such Ideal Ratio Mask prediction.
nodes.AddFinalLayer(config_lines, prev_layer_output, num_targets,
max_change_per_component = max_change_per_component_final,
use_presoftmax_prior_scale = use_presoftmax_prior_scale,
prior_scale_file = prior_scale_file,
include_log_softmax = include_log_softmax,
add_final_sigmoid = add_final_sigmoid,
objective_type = objective_type)
if xent_regularize != 0.0:
nodes.AddFinalLayer(config_lines, prev_layer_output, num_targets,
ng_affine_options = " param-stddev=0 bias-stddev=0 learning-rate-factor={0} ".format(
0.5 / xent_regularize),
max_change_per_component = max_change_per_component_final,
use_presoftmax_prior_scale = use_presoftmax_prior_scale,
prior_scale_file = prior_scale_file,
include_log_softmax = True,
name_affix = 'xent')
config_files['{0}/layer{1}.config'.format(config_dir, i+1)] = config_lines
config_lines = {'components':[], 'component-nodes':[]}
left_context += int(parsed_splice_output['left_context'])
right_context += int(parsed_splice_output['right_context'])
# write the files used by other scripts like steps/nnet3/get_egs.sh
f = open(config_dir + "/vars", "w")
print('model_left_context={}'.format(left_context), file=f)
print('model_right_context={}'.format(right_context), file=f)
print('num_hidden_layers={}'.format(num_hidden_layers), file=f)
print('num_targets={}'.format(num_targets), file=f)
print('add_lda=' + ('true' if add_lda else 'false'), file=f)
print('include_log_softmax=' + ('true' if include_log_softmax else 'false'), file=f)
print('objective_type=' + objective_type, file=f)
f.close()
# printing out the configs
# init.config used to train lda-mllt train
for key in config_files.keys():
PrintConfig(key, config_files[key])
def Main():
args = GetArgs()
MakeConfigs(config_dir = args.config_dir,
splice_indexes_string = args.splice_indexes,
feat_dim = args.feat_dim, ivector_dim = args.ivector_dim,
num_targets = args.num_targets,
add_lda = args.add_lda,
cnn_layer = args.cnn_layer,
cnn_bottleneck_dim = args.cnn_bottleneck_dim,
cepstral_lifter = args.cepstral_lifter,
nonlin_type = args.nonlin_type,
nonlin_input_dim = args.nonlin_input_dim,
nonlin_output_dim = args.nonlin_output_dim,
subset_dim = args.subset_dim,
nonlin_output_dim_init = args.nonlin_output_dim_init,
nonlin_output_dim_final = args.nonlin_output_dim_final,
use_presoftmax_prior_scale = args.use_presoftmax_prior_scale,
final_layer_normalize_target = args.final_layer_normalize_target,
include_log_softmax = args.include_log_softmax,
add_final_sigmoid = args.add_final_sigmoid,
xent_regularize = args.xent_regularize,
xent_separate_forward_affine = args.xent_separate_forward_affine,
self_repair_scale = args.self_repair_scale_nonlinearity,
max_change_per_component = args.max_change_per_component,
max_change_per_component_final = args.max_change_per_component_final,
objective_type = args.objective_type)
if __name__ == "__main__":
Main()