train_raw_nnet.sh
23.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
#!/bin/bash
# THIS SCRIPT IS DEPRECATED, see ../train_raw_dnn.py
# note, TDNN is the same as what we used to call multisplice.
# THIS SCRIPT IS DEPRECATED, see ../train_raw_dnn.py
# Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey).
# 2013 Xiaohui Zhang
# 2013 Guoguo Chen
# 2014-2016 Vimal Manohar
# 2014 Vijayaditya Peddinti
# Apache 2.0.
# Begin configuration section.
cmd=run.pl
num_epochs=15 # Number of epochs of training;
# the number of iterations is worked out from this.
initial_effective_lrate=0.01
final_effective_lrate=0.001
rand_prune=4.0 # Relates to a speedup we do for LDA.
minibatch_size=512 # This default is suitable for GPU-based training.
# Set it to 128 for multi-threaded CPU-based training.
max_param_change=2.0 # max param change per minibatch
samples_per_iter=400000 # each iteration of training, see this many samples
# per job. This option is passed to get_egs.sh
num_jobs_initial=1 # Number of neural net jobs to run in parallel at the start of training
num_jobs_final=8 # Number of neural net jobs to run in parallel at the end of training
prior_subset_size=20000 # 20k samples per job, for computing priors.
num_jobs_compute_prior=10 # these are single-threaded, run on CPU.
get_egs_stage=0 # can be used for rerunning after partial
online_ivector_dir=
remove_egs=true # set to false to disable removing egs after training is done.
max_models_combine=20 # The "max_models_combine" is the maximum number of models we give
# to the final 'combine' stage, but these models will themselves be averages of
# iteration-number ranges.
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
# (the point of this is to get data in different minibatches on different iterations,
# since in the preconditioning method, 2 samples in the same minibatch can
# affect each others' gradients.
add_layers_period=2 # by default, add new layers every 2 iterations.
stage=-6
exit_stage=-100 # you can set this to terminate the training early. Exits before running this stage
chunk_training=false # if true training is done with chunk randomization, rather than frame randomization
randprune=4.0 # speeds up LDA.
use_gpu=true # if true, we run on GPU.
cleanup=true
egs_dir=
configs_dir=
max_lda_jobs=10 # use no more than 10 jobs for the LDA accumulation.
lda_opts=
egs_opts=
transform_dir= # If supplied, this dir used instead of alidir to find transforms.
cmvn_opts= # will be passed to get_lda.sh and get_egs.sh, if supplied.
frames_per_eg=8 # to be passed on to get_egs.sh
# Raw nnet training options i.e. without transition model
nj=4
dense_targets=true # Use dense targets instead of sparse targets
# End configuration section.
trap 'for pid in $(jobs -pr); do kill -KILL $pid; done' INT QUIT TERM
echo "$0: THIS SCRIPT IS DEPRECATED"
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 3 ]; then
echo "$0: THIS SCRIPT IS DEPRECATED, see ../train_raw_dnn.py"
echo "Usage: $0 [opts] <data> <targets-scp> <exp-dir>"
echo " e.g.: $0 data/train scp:snr_targets/targets.scp exp/nnet3_snr_predictor"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|15> # Number of epochs of training"
echo " --initial-effective-lrate <lrate|0.02> # effective learning rate at start of training."
echo " --final-effective-lrate <lrate|0.004> # effective learning rate at end of training."
echo " # data, 0.00025 for large data"
echo " --num-hidden-layers <#hidden-layers|2> # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
echo " --add-layers-period <#iters|2> # Number of iterations between adding hidden layers"
echo " --num-jobs-initial <num-jobs|1> # Number of parallel jobs to use for neural net training, at the start."
echo " --num-jobs-final <num-jobs|8> # Number of parallel jobs to use for neural net training, at the end"
echo " --num-threads <num-threads|16> # Number of parallel threads per job, for CPU-based training (will affect"
echo " # results as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... note, you might have to reduce --mem"
echo " # versus your defaults, because it gets multiplied by the --num-threads argument."
echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads"
echo " # should not get too large, e.g. >2k)."
echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per"
echo " # process."
echo " --splice-indexes <string|layer0/-4:-3:-2:-1:0:1:2:3:4> "
echo " # Frame indices used for each splice layer."
echo " # Format : layer<hidden_layer_index>/<frame_indices>....layer<hidden_layer>/<frame_indices> "
echo " # (note: we splice processed, typically 40-dimensional frames"
echo " --lda-dim <dim|''> # Dimension to reduce spliced features to with LDA"
echo " --stage <stage|-4> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
data=$1
targets_scp=$2
dir=$3
# Check some files.
for f in $data/feats.scp $targets_scp; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log
echo $nj > $dir/num_jobs
# First work out the feature and iVector dimension, needed for tdnn config creation.
feat_dim=$(feat-to-dim --print-args=false scp:$data/feats.scp -) || \
{ echo "$0: Error getting feature dim"; exit 1; }
if [ -z "$online_ivector_dir" ]; then
ivector_dim=0
else
ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1;
steps/nnet2/get_ivector_id.sh $online_ivector_dir > $dir/final.ie.id || exit 1
fi
if [ ! -z "$configs_dir" ]; then
cp -rT $configs_dir $dir/configs || exit 1
fi
if [ $stage -le -5 ]; then
# Initialize as "raw" nnet, prior to training the LDA-like preconditioning
# matrix. This first config just does any initial splicing that we do;
# we do this as it's a convenient way to get the stats for the 'lda-like'
# transform.
$cmd $dir/log/nnet_init.log \
nnet3-init --srand=-2 $dir/configs/init.config $dir/init.raw || exit 1;
fi
# sourcing the "vars" below sets
# model_left_context=(something)
# model_right_context=(something)
# num_hidden_layers=(something)
# num_targets=(something)
# add_lda=(true|false)
# include_log_softmax=(true|false)
# objective_type=(something)
. $dir/configs/vars || exit 1;
left_context=$model_left_context
right_context=$model_right_context
[ -z "$num_targets" ] && echo "\$num_targets is not defined. Needs to be defined in $dir/configs/vars." && exit 1
[ -z "$add_lda" ] && echo "\$add_lda is not defined. Needs to be defined in $dir/configs/vars." && exit 1
[ -z "$include_log_softmax" ] && echo "\$include_log_softmax is not defined. Needs to be defined in $dir/configs/vars." && exit 1
[ -z "$objective_type" ] && echo "\$objective_type is not defined. Needs to be defined in $dir/configs/vars." && exit 1
context_opts="--left-context=$left_context --right-context=$right_context"
! [ "$num_hidden_layers" -gt 0 ] && echo \
"$0: Expected num_hidden_layers to be defined" && exit 1;
if $dense_targets; then
tmp_num_targets=`feat-to-dim scp:$targets_scp - 2>/dev/null` || exit 1
if [ $tmp_num_targets -ne $num_targets ]; then
echo "Mismatch between num-targets provided to script vs configs"
exit 1
fi
fi
if [ $stage -le -4 ] && [ -z "$egs_dir" ]; then
extra_opts=()
[ ! -z "$cmvn_opts" ] && extra_opts+=(--cmvn-opts "$cmvn_opts")
[ ! -z "$online_ivector_dir" ] && extra_opts+=(--online-ivector-dir $online_ivector_dir)
extra_opts+=(--transform-dir "$transform_dir")
extra_opts+=(--left-context $left_context)
extra_opts+=(--right-context $right_context)
echo "$0: calling get_egs.sh"
if $dense_targets; then
target_type=dense
else
target_type=sparse
fi
steps/nnet3/get_egs_targets.sh $egs_opts "${extra_opts[@]}" \
--samples-per-iter $samples_per_iter --stage $get_egs_stage \
--cmd "$cmd" --nj $nj \
--frames-per-eg $frames_per_eg \
--target-type $target_type --num-targets $num_targets \
$data $targets_scp $dir/egs || exit 1;
fi
[ -z $egs_dir ] && egs_dir=$dir/egs
if [ ! -z "$online_ivector_dir" ] ; then
steps/nnet2/check_ivectors_compatible.sh $online_ivector_dir $egs_dir/info || exit 1
fi
if [ "$feat_dim" != "$(cat $egs_dir/info/feat_dim)" ]; then
echo "$0: feature dimension mismatch with egs, $feat_dim vs $(cat $egs_dir/info/feat_dim)";
exit 1;
fi
if [ "$ivector_dim" != "$(cat $egs_dir/info/ivector_dim)" ]; then
echo "$0: ivector dimension mismatch with egs, $ivector_dim vs $(cat $egs_dir/info/ivector_dim)";
exit 1;
fi
# copy any of the following that exist, to $dir.
cp $egs_dir/{cmvn_opts,splice_opts,final.mat} $dir 2>/dev/null
# confirm that the egs_dir has the necessary context (especially important if
# the --egs-dir option was used on the command line).
egs_left_context=$(cat $egs_dir/info/left_context) || exit -1
egs_right_context=$(cat $egs_dir/info/right_context) || exit -1
( [ $egs_left_context -lt $left_context ] || \
[ $egs_right_context -lt $right_context ] ) && \
echo "$0: egs in $egs_dir have too little context" && exit -1;
frames_per_eg=$(cat $egs_dir/info/frames_per_eg) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }
num_archives=$(cat $egs_dir/info/num_archives) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }
# num_archives_expanded considers each separate label-position from
# 0..frames_per_eg-1 to be a separate archive.
if [ "$chunk_training" == "true" ]; then
num_archives_expanded=$num_archives
else
num_archives_expanded=$[$num_archives*$frames_per_eg]
fi
[ $num_jobs_initial -gt $num_jobs_final ] && \
echo "$0: --initial-num-jobs cannot exceed --final-num-jobs" && exit 1;
[ $num_jobs_final -gt $num_archives_expanded ] && \
echo "$0: --final-num-jobs cannot exceed #archives $num_archives_expanded." && exit 1;
if $add_lda && [ $stage -le -3 ]; then
echo "$0: getting preconditioning matrix for input features."
num_lda_jobs=$num_archives
[ $num_lda_jobs -gt $max_lda_jobs ] && num_lda_jobs=$max_lda_jobs
# Write stats with the same format as stats for LDA.
$cmd JOB=1:$num_lda_jobs $dir/log/get_lda_stats.JOB.log \
nnet3-acc-lda-stats --rand-prune=$rand_prune \
$dir/init.raw "ark:$egs_dir/egs.JOB.ark" $dir/JOB.lda_stats || exit 1;
all_lda_accs=$(for n in $(seq $num_lda_jobs); do echo $dir/$n.lda_stats; done)
$cmd $dir/log/sum_transform_stats.log \
sum-lda-accs $dir/lda_stats $all_lda_accs || exit 1;
rm $all_lda_accs || exit 1;
# this computes a fixed affine transform computed in the way we described in
# Appendix C.6 of http://arxiv.org/pdf/1410.7455v6.pdf; it's a scaled variant
# of an LDA transform but without dimensionality reduction.
$cmd $dir/log/get_transform.log \
nnet-get-feature-transform $lda_opts $dir/lda.mat $dir/lda_stats || exit 1;
ln -sf ../lda.mat $dir/configs/lda.mat
fi
if [ $stage -le -1 ]; then
# Add the first layer; this will add in the lda.mat
$cmd $dir/log/add_first_layer.log \
nnet3-init --srand=-3 $dir/init.raw $dir/configs/layer1.config $dir/0.raw || exit 1;
fi
# set num_iters so that as close as possible, we process the data $num_epochs
# times, i.e. $num_iters*$avg_num_jobs) == $num_epochs*$num_archives_expanded,
# where avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
num_archives_to_process=$[$num_epochs*$num_archives_expanded]
num_archives_processed=0
num_iters=$[($num_archives_to_process*2)/($num_jobs_initial+$num_jobs_final)]
finish_add_layers_iter=$[$num_hidden_layers * $add_layers_period]
! [ $num_iters -gt $[$finish_add_layers_iter+2] ] \
&& echo "$0: Insufficient epochs" && exit 1
echo "$0: Will train for $num_epochs epochs = $num_iters iterations"
if $use_gpu; then
parallel_suffix=""
train_queue_opt="--gpu 1"
combine_queue_opt="--gpu 1"
prior_gpu_opt="--use-gpu=yes"
prior_queue_opt="--gpu 1"
parallel_train_opts=
if ! cuda-compiled; then
echo "$0: WARNING: you are running with one thread but you have not compiled"
echo " for CUDA. You may be running a setup optimized for GPUs. If you have"
echo " GPUs and have nvcc installed, go to src/ and do ./configure; make"
exit 1
fi
else
echo "$0: without using a GPU this will be very slow. nnet3 does not yet support multiple threads."
parallel_train_opts="--use-gpu=no"
combine_queue_opt="" # the combine stage will be quite slow if not using
# GPU, as we didn't enable that program to use
# multiple threads.
prior_gpu_opt="--use-gpu=no"
prior_queue_opt=""
fi
approx_iters_per_epoch_final=$[$num_archives_expanded/$num_jobs_final]
# First work out how many iterations we want to combine over in the final
# nnet3-combine-fast invocation. (We may end up subsampling from these if the
# number exceeds max_model_combine). The number we use is:
# min(max(max_models_combine, approx_iters_per_epoch_final),
# 1/2 * iters_after_last_layer_added)
num_iters_combine=$max_models_combine
if [ $num_iters_combine -lt $approx_iters_per_epoch_final ]; then
num_iters_combine=$approx_iters_per_epoch_final
fi
half_iters_after_add_layers=$[($num_iters-$finish_add_layers_iter)/2]
if [ $num_iters_combine -gt $half_iters_after_add_layers ]; then
num_iters_combine=$half_iters_after_add_layers
fi
first_model_combine=$[$num_iters-$num_iters_combine+1]
x=0
compute_accuracy=false
if [ "$objective_type" == "linear" ]; then
compute_accuracy=true
fi
while [ $x -lt $num_iters ]; do
[ $x -eq $exit_stage ] && echo "$0: Exiting early due to --exit-stage $exit_stage" && exit 0;
this_num_jobs=$(perl -e "print int(0.5+$num_jobs_initial+($num_jobs_final-$num_jobs_initial)*$x/$num_iters);")
ilr=$initial_effective_lrate; flr=$final_effective_lrate; np=$num_archives_processed; nt=$num_archives_to_process;
this_learning_rate=$(perl -e "print (($x + 1 >= $num_iters ? $flr : $ilr*exp($np*log($flr/$ilr)/$nt))*$this_num_jobs);");
echo "On iteration $x, learning rate is $this_learning_rate."
if [ $x -ge 0 ] && [ $stage -le $x ]; then
# Set off jobs doing some diagnostics, in the background.
# Use the egs dir from the previous iteration for the diagnostics
$cmd $dir/log/compute_prob_valid.$x.log \
nnet3-compute-prob --compute-accuracy=$compute_accuracy $dir/$x.raw \
"ark,bg:nnet3-merge-egs ark:$egs_dir/valid_diagnostic.egs ark:- |" &
$cmd $dir/log/compute_prob_train.$x.log \
nnet3-compute-prob --compute-accuracy=$compute_accuracy $dir/$x.raw \
"ark,bg:nnet3-merge-egs ark:$egs_dir/train_diagnostic.egs ark:- |" &
if [ $x -gt 0 ]; then
$cmd $dir/log/progress.$x.log \
nnet3-show-progress --use-gpu=no $dir/$[x-1].raw $dir/$x.raw \
"ark,bg:nnet3-merge-egs ark:$egs_dir/train_diagnostic.egs ark:-|" '&&' \
nnet3-info $dir/$x.raw &
fi
echo "Training neural net (pass $x)"
if [ $x -gt 0 ] && \
[ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \
[ $[$x%$add_layers_period] -eq 0 ]; then
do_average=false # if we've just mixed up, don't do averaging but take the
# best.
cur_num_hidden_layers=$[1+$x/$add_layers_period]
config=$dir/configs/layer$cur_num_hidden_layers.config
raw="nnet3-copy --learning-rate=$this_learning_rate $dir/$x.raw - | nnet3-init --srand=$x - $config - |"
else
do_average=true
if [ $x -eq 0 ]; then do_average=false; fi # on iteration 0, pick the best, don't average.
raw="nnet3-copy --learning-rate=$this_learning_rate $dir/$x.raw -|"
fi
if $do_average; then
this_minibatch_size=$minibatch_size
else
# on iteration zero or when we just added a layer, use a smaller minibatch
# size (and we will later choose the output of just one of the jobs): the
# model-averaging isn't always helpful when the model is changing too fast
# (i.e. it can worsen the objective function), and the smaller minibatch
# size will help to keep the update stable.
this_minibatch_size=$[$minibatch_size/2];
fi
rm $dir/.error 2>/dev/null
( # this sub-shell is so that when we "wait" below,
# we only wait for the training jobs that we just spawned,
# not the diagnostic jobs that we spawned above.
# We can't easily use a single parallel SGE job to do the main training,
# because the computation of which archive and which --frame option
# to use for each job is a little complex, so we spawn each one separately.
for n in $(seq $this_num_jobs); do
k=$[$num_archives_processed + $n - 1]; # k is a zero-based index that we'll derive
# the other indexes from.
archive=$[($k%$num_archives)+1]; # work out the 1-based archive index.
frame=$[(($k/$num_archives)%$frames_per_eg)]; # work out the 0-based frame
# index; this increases more slowly than the archive index because the
# same archive with different frame indexes will give similar gradients,
# so we want to separate them in time.
$cmd $train_queue_opt $dir/log/train.$x.$n.log \
nnet3-train $parallel_train_opts \
--max-param-change=$max_param_change "$raw" \
"ark,bg:nnet3-copy-egs --frame=$frame $context_opts ark:$egs_dir/egs.$archive.ark ark:- | nnet3-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:-| nnet3-merge-egs --minibatch-size=$this_minibatch_size --discard-partial-minibatches=true ark:- ark:- |" \
$dir/$[$x+1].$n.raw || touch $dir/.error &
done
wait
)
# the error message below is not that informative, but $cmd will
# have printed a more specific one.
[ -f $dir/.error ] && echo "$0: error on iteration $x of training" && exit 1;
nnets_list=
for n in `seq 1 $this_num_jobs`; do
nnets_list="$nnets_list $dir/$[$x+1].$n.raw"
done
if $do_average; then
# average the output of the different jobs.
$cmd $dir/log/average.$x.log \
nnet3-average $nnets_list $dir/$[x+1].raw || exit 1;
else
# choose the best from the different jobs.
n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) {
$fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn";
undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } }
close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob;
$best_n=$n; } } print "$best_n\n"; ' $this_num_jobs $dir/log/train.$x.%d.log) || exit 1;
[ -z "$n" ] && echo "Error getting best model" && exit 1;
$cmd $dir/log/select.$x.log \
nnet3-copy $dir/$[$x+1].$n.raw $dir/$[$x+1].raw || exit 1;
fi
rm $nnets_list
[ ! -f $dir/$[$x+1].raw ] && exit 1;
if [ -f $dir/$[$x-1].raw ] && $cleanup && \
[ $[($x-1)%100] -ne 0 ] && [ $[$x-1] -lt $first_model_combine ]; then
rm $dir/$[$x-1].raw
fi
fi
x=$[$x+1]
num_archives_processed=$[$num_archives_processed+$this_num_jobs]
done
if [ $stage -le $num_iters ]; then
echo "Doing final combination to produce final.raw"
# Now do combination. In the nnet3 setup, the logic
# for doing averaging of subsets of the models in the case where
# there are too many models to reliably esetimate interpolation
# factors (max_models_combine) is moved into the nnet3-combine
nnets_list=()
for n in $(seq 0 $[num_iters_combine-1]); do
iter=$[$first_model_combine+$n]
nnet=$dir/$iter.raw
[ ! -f $nnet ] && echo "Expected $nnet to exist" && exit 1;
nnets_list[$n]=$nnet
done
# Below, we use --use-gpu=no to disable nnet3-combine-fast from using a GPU,
# as if there are many models it can give out-of-memory error; and we set
# num-threads to 8 to speed it up (this isn't ideal...)
$cmd $combine_queue_opt $dir/log/combine.log \
nnet3-combine --num-iters=40 \
--enforce-sum-to-one=true --enforce-positive-weights=true \
--verbose=3 "${nnets_list[@]}" "ark,bg:nnet3-merge-egs --minibatch-size=1024 ark:$egs_dir/combine.egs ark:-|" \
$dir/final.raw || exit 1;
# Compute the probability of the final, combined model with
# the same subset we used for the previous compute_probs, as the
# different subsets will lead to different probs.
$cmd $dir/log/compute_prob_valid.final.log \
nnet3-compute-prob --compute-accuracy=$compute_accuracy $dir/final.raw \
"ark,bg:nnet3-merge-egs ark:$egs_dir/valid_diagnostic.egs ark:- |" &
$cmd $dir/log/compute_prob_train.final.log \
nnet3-compute-prob --compute-accuracy=$compute_accuracy $dir/final.raw \
"ark,bg:nnet3-merge-egs ark:$egs_dir/train_diagnostic.egs ark:- |" &
fi
if $include_log_softmax && [ $stage -le $[$num_iters+1] ]; then
echo "Getting average posterior for purpose of using as prior to convert posteriors to likelihoods."
# Note: this just uses CPUs, using a smallish subset of data.
if [ $num_jobs_compute_prior -gt $num_archives ]; then egs_part=1;
else egs_part=JOB; fi
rm $dir/post.$x.*.vec 2>/dev/null
$cmd JOB=1:$num_jobs_compute_prior $prior_queue_opt $dir/log/get_post.$x.JOB.log \
nnet3-copy-egs --frame=random $context_opts --srand=JOB ark:$egs_dir/egs.$egs_part.ark ark:- \| \
nnet3-subset-egs --srand=JOB --n=$prior_subset_size ark:- ark:- \| \
nnet3-merge-egs ark:- ark:- \| \
nnet3-compute-from-egs $prior_gpu_opt --apply-exp=true \
$dir/final.raw ark:- ark:- \| \
matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1;
sleep 3; # make sure there is time for $dir/post.$x.*.vec to appear.
$cmd $dir/log/vector_sum.$x.log \
vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1;
rm -f $dir/post.$x.*.vec;
fi
if [ ! -f $dir/final.raw ]; then
echo "$0: $dir/final.raw does not exist."
# we don't want to clean up if the training didn't succeed.
exit 1;
fi
sleep 2
echo Done
if $cleanup; then
echo Cleaning up data
if $remove_egs && [[ $egs_dir =~ $dir/egs* ]]; then
steps/nnet2/remove_egs.sh $egs_dir
fi
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$x.mdl ]; then
# delete all but every 100th model; don't delete the ones which combine to form the final model.
rm $dir/$x.raw
fi
done
fi