train_discriminative.sh
15.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#!/bin/bash
# Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey)
# 2014-2015 Vimal Manohar
# Apache 2.0.
set -o pipefail
# This script does MPE or MMI or state-level minimum bayes risk (sMBR) training
# using egs obtained by steps/nnet3/get_egs_discriminative.sh
# Begin configuration section.
cmd=run.pl
num_epochs=4 # Number of epochs of training;
# the number of iterations is worked out from this.
# Be careful with this: we actually go over the data
# num-epochs * frame-subsampling-factor times, due to
# using different data-shifts.
use_gpu=true
apply_deriv_weights=true
use_frame_shift=false
run_diagnostics=true
learning_rate=0.00002
max_param_change=2.0
scale_max_param_change=false # if this option is used, scale it by num-jobs.
effective_lrate= # If supplied, overrides the learning rate, which gets set to effective_lrate * num_jobs_nnet.
acoustic_scale=0.1 # acoustic scale for MMI/MPFE/SMBR training.
boost=0.0 # option relevant for MMI
criterion=smbr
drop_frames=false # option relevant for MMI
one_silence_class=true # option relevant for MPE/SMBR
num_jobs_nnet=4 # Number of neural net jobs to run in parallel. Note: this
# will interact with the learning rates (if you decrease
# this, you'll have to decrease the learning rate, and vice
# versa).
regularization_opts=
minibatch_size=64 # This is the number of examples rather than the number of output frames.
last_layer_factor=1.0 # relates to modify-learning-rates [deprecated]
shuffle_buffer_size=1000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
stage=-3
num_threads=16 # this is the default but you may want to change it, e.g. to 1 if
# using GPUs.
cleanup=true
keep_model_iters=100
remove_egs=false
src_model= # will default to $degs_dir/final.mdl
num_jobs_compute_prior=10
min_deriv_time=0
max_deriv_time_relative=0
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 2 ]; then
echo "Usage: $0 [opts] <degs-dir> <exp-dir>"
echo " e.g.: $0 exp/nnet3/tdnn_sp_degs exp/nnet3/tdnn_sp_smbr"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|4> # Number of epochs of training"
echo " --learning-rate <learning-rate|0.0002> # Learning rate to use"
echo " --effective-lrate <effective-learning-rate> # If supplied, learning rate will be set to"
echo " # this value times num-jobs-nnet."
echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net"
echo " # training (will affect results as well as speed; try 8, 16)"
echo " # Note: if you increase this, you may want to also increase"
echo " # the learning rate. Also note: if there are fewer archives"
echo " # of egs than this, it will get reduced automatically."
echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results"
echo " # as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size. With GPU, must be 1."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... "
echo " --stage <stage|-3> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
echo " --criterion <criterion|smbr> # Training criterion: may be smbr, mmi or mpfe"
echo " --boost <boost|0.0> # Boosting factor for MMI (e.g., 0.1)"
echo " --drop-frames <true,false|false> # Option that affects MMI training: if true, we exclude gradients from frames"
echo " # where the numerator transition-id is not in the denominator lattice."
echo " --one-silence-class <true,false|false> # Option that affects MPE/SMBR training (will tend to reduce insertions)"
echo " --modify-learning-rates <true,false|false> # If true, modify learning rates to try to equalize relative"
echo " # changes across layers. [deprecated]"
exit 1;
fi
degs_dir=$1
dir=$2
[ -z "$src_model" ] && src_model=$degs_dir/final.mdl
# Check some files.
for f in $degs_dir/degs.1.ark $degs_dir/info/{num_archives,silence.csl,frame_subsampling_factor} $src_model; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
mkdir -p $dir/log || exit 1;
model_left_context=$(nnet3-am-info $src_model | grep "^left-context:" | awk '{print $2}')
model_right_context=$(nnet3-am-info $src_model | grep "^right-context:" | awk '{print $2}')
# Copy the ivector information
if [ -f $degs_dir/info/final.ie.id ]; then
cp $degs_dir/info/final.ie.id $dir/ 2>/dev/null || true
fi
# copy some things
for f in splice_opts cmvn_opts tree final.mat; do
if [ -f $degs_dir/$f ]; then
cp $degs_dir/$f $dir/ || exit 1;
fi
done
silphonelist=`cat $degs_dir/info/silence.csl` || exit 1;
num_archives=$(cat $degs_dir/info/num_archives) || exit 1;
frame_subsampling_factor=$(cat $degs_dir/info/frame_subsampling_factor)
echo $frame_subsampling_factor > $dir/frame_subsampling_factor
if $use_frame_shift; then
num_archives_expanded=$[$num_archives*$frame_subsampling_factor]
else
num_archives_expanded=$num_archives
fi
if [ $num_jobs_nnet -gt $num_archives_expanded ]; then
echo "$0: num-jobs-nnet $num_jobs_nnet exceeds number of archives $num_archives_expanded,"
echo " ... setting it to $num_archives."
num_jobs_nnet=$num_archives_expanded
fi
num_archives_to_process=$[$num_epochs*$num_archives_expanded]
num_archives_processed=0
num_iters=$[$num_archives_to_process/$num_jobs_nnet]
echo "$0: Will train for $num_epochs epochs = $num_iters iterations"
if $use_gpu; then
parallel_suffix=""
train_queue_opt="--gpu 1"
parallel_train_opts=
if ! cuda-compiled; then
echo "$0: WARNING: you are running with one thread but you have not compiled"
echo " for CUDA. You may be running a setup optimized for GPUs. If you have"
echo " GPUs and have nvcc installed, go to src/ and do ./configure; make"
exit 1
fi
else
echo "$0: without using a GPU this will be very slow. nnet3 does not yet support multiple threads."
parallel_train_opts="--use-gpu=no"
fi
if $use_frame_shift; then
num_epochs_expanded=$[num_epochs*frame_subsampling_factor]
else
num_epochs_expanded=$num_epochs
fi
for e in $(seq 1 $num_epochs_expanded); do
x=$[($e*$num_archives)/$num_jobs_nnet] # gives the iteration number.
iter_to_epoch[$x]=$e
done
if [ $stage -le -1 ]; then
echo "$0: Copying initial model and modifying preconditioning setup"
# Note, the baseline model probably had preconditioning, and we'll keep it;
# but we want online preconditioning with a larger number of samples of
# history, since in this setup the frames are only randomized at the segment
# level so they are highly correlated. It might make sense to tune this a
# little, later on, although I doubt it matters once the --num-samples-history
# is large enough.
if [ ! -z "$effective_lrate" ]; then
learning_rate=$(perl -e "print ($num_jobs_nnet*$effective_lrate);")
echo "$0: setting learning rate to $learning_rate = --num-jobs-nnet * --effective-lrate."
fi
# set the learning rate to $learning_rate, and
# set the output-layer's learning rate to
# $learning_rate times $last_layer_factor.
edits_str="set-learning-rate learning-rate=$learning_rate"
if [ "$last_layer_factor" != "1.0" ]; then
last_layer_lrate=$(perl -e "print ($learning_rate*$last_layer_factor);") || exit 1
edits_str="$edits_str; set-learning-rate name=output.affine learning-rate=$last_layer_lrate"
fi
$cmd $dir/log/convert.log \
nnet3-am-copy --edits="$edits_str" "$src_model" $dir/0.mdl || exit 1;
ln -sf 0.mdl $dir/epoch0.mdl
fi
rm $dir/.error 2>/dev/null
x=0
while [ $x -lt $num_iters ]; do
if [ $stage -le $x ]; then
if $run_diagnostics; then
# Set off jobs doing some diagnostics, in the background. # Use the egs dir from the previous iteration for the diagnostics
$cmd $dir/log/compute_objf_valid.$x.log \
nnet3-discriminative-compute-objf $regularization_opts \
--silence-phones=$silphonelist \
--criterion=$criterion --drop-frames=$drop_frames \
--one-silence-class=$one_silence_class \
--boost=$boost --acoustic-scale=$acoustic_scale \
$dir/$x.mdl \
"ark,bg:nnet3-discriminative-copy-egs ark:$degs_dir/valid_diagnostic.degs ark:- | nnet3-discriminative-merge-egs --minibatch-size=1:64 ark:- ark:- |" &
$cmd $dir/log/compute_objf_train.$x.log \
nnet3-discriminative-compute-objf $regularization_opts \
--silence-phones=$silphonelist \
--criterion=$criterion --drop-frames=$drop_frames \
--one-silence-class=$one_silence_class \
--boost=$boost --acoustic-scale=$acoustic_scale \
$dir/$x.mdl \
"ark,bg:nnet3-discriminative-copy-egs ark:$degs_dir/train_diagnostic.degs ark:- | nnet3-discriminative-merge-egs --minibatch-size=1:64 ark:- ark:- |" &
fi
if [ $x -gt 0 ]; then
$cmd $dir/log/progress.$x.log \
nnet3-show-progress --use-gpu=no "nnet3-am-copy --raw=true $dir/$[$x-1].mdl - |" "nnet3-am-copy --raw=true $dir/$x.mdl - |" \
'&&' \
nnet3-info "nnet3-am-copy --raw=true $dir/$x.mdl - |" &
fi
echo "Training neural net (pass $x)"
cache_read_opt="--read-cache=$dir/cache.$x"
( # this sub-shell is so that when we "wait" below,
# we only wait for the training jobs that we just spawned,
# not the diagnostic jobs that we spawned above.
# We can't easily use a single parallel SGE job to do the main training,
# because the computation of which archive and which --frame option
# to use for each job is a little complex, so we spawn each one separately.
for n in `seq $num_jobs_nnet`; do
k=$[$num_archives_processed + $n - 1]; # k is a zero-based index that we'll derive
# the other indexes from.
archive=$[($k%$num_archives)+1]; # work out the 1-based archive index.
if [ $n -eq 1 ]; then
# an option for writing cache (storing pairs of nnet-computations and
# computation-requests) during training.
cache_write_opt=" --write-cache=$dir/cache.$[$x+1]"
else
cache_write_opt=""
fi
if $use_frame_shift; then
frame_shift=$[(k%num_archives + k/num_archives) % frame_subsampling_factor]
else
frame_shift=0
fi
#archive=$[(($n+($x*$num_jobs_nnet))%$num_archives)+1]
if $scale_max_param_change; then
this_max_param_change=$(perl -e "print ($max_param_change * $num_jobs_nnet);")
else
this_max_param_change=$max_param_change
fi
$cmd $train_queue_opt $dir/log/train.$x.$n.log \
nnet3-discriminative-train $cache_read_opt $cache_write_opt \
--apply-deriv-weights=$apply_deriv_weights \
--optimization.min-deriv-time=-$model_left_context \
--optimization.max-deriv-time-relative=$model_right_context \
$parallel_train_opts \
--max-param-change=$this_max_param_change \
--silence-phones=$silphonelist \
--criterion=$criterion --drop-frames=$drop_frames \
--one-silence-class=$one_silence_class \
--boost=$boost --acoustic-scale=$acoustic_scale $regularization_opts \
$dir/$x.mdl \
"ark,bg:nnet3-discriminative-copy-egs --frame-shift=$frame_shift ark:$degs_dir/degs.$archive.ark ark:- | nnet3-discriminative-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:- | nnet3-discriminative-merge-egs --minibatch-size=$minibatch_size ark:- ark:- |" \
$dir/$[$x+1].$n.raw || touch $dir/.error &
done
wait
[ -f $dir/.error ] && exit 1
)
[ -f $dir/.error ] && { echo "Found $dir/.error. See $dir/log/train.$x.*.log"; exit 1; }
nnets_list=$(for n in $(seq $num_jobs_nnet); do echo $dir/$[$x+1].$n.raw; done)
# below use run.pl instead of a generic $cmd for these very quick stages,
# so that we don't run the risk of waiting for a possibly hard-to-get GPU.
run.pl $dir/log/average.$x.log \
nnet3-average $nnets_list - \| \
nnet3-am-copy --set-raw-nnet=- $dir/$x.mdl $dir/$[$x+1].mdl || exit 1;
rm $nnets_list
[ ! -f $dir/$[$x+1].mdl ] && echo "$0: Did not create $dir/$[$x+1].mdl" && exit 1;
if [ -f $dir/$[$x-1].mdl ] && $cleanup && \
[ $[($x-1)%$keep_model_iters] -ne 0 ] && \
[ -z "${iter_to_epoch[$[$x-1]]}" ]; then
rm $dir/$[$x-1].mdl
fi
[ -f $dir/.error ] && { echo "Found $dir/.error. Error on iteration $x"; exit 1; }
fi
rm $dir/cache.$x 2>/dev/null || true
x=$[$x+1]
num_archives_processed=$[num_archives_processed+num_jobs_nnet]
if [ $stage -le $x ] && [ ! -z "${iter_to_epoch[$x]}" ]; then
e=${iter_to_epoch[$x]}
ln -sf $x.mdl $dir/epoch$e.mdl
(
rm $dir/.error 2> /dev/null
steps/nnet3/adjust_priors.sh --egs-type degs \
--num-jobs-compute-prior $num_jobs_compute_prior \
--cmd "$cmd" --use-gpu false \
--minibatch-size $minibatch_size \
--use-raw-nnet false --iter epoch$e $dir $degs_dir \
|| { touch $dir/.error; echo "Error in adjusting priors. See errors above."; exit 1; }
) &
fi
done
rm $dir/final.mdl 2>/dev/null
cp $dir/$x.mdl $dir/final.mdl
# function to remove egs that might be soft links.
remove () { for x in $*; do [ -L $x ] && rm $(utils/make_absolute.sh $x); rm $x; done }
if $cleanup && $remove_egs; then # note: this is false by default.
echo Removing training examples
remove $degs_dir/degs.*
remove $degs_dir/priors_egs.*
fi
if $cleanup; then
echo Removing most of the models
for x in `seq 1 $keep_model_iters $num_iters`; do
if [ -z "${iter_to_epoch[$x]}" ]; then
# if $x is not an epoch-final iteration..
rm $dir/$x.mdl 2>/dev/null
fi
done
fi
wait
[ -f $dir/.error ] && { echo "Found $dir/.error."; exit 1; }
echo Done && exit 0