train_raw_rnn.py 26.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
#!/usr/bin/env python


# Copyright 2016 Vijayaditya Peddinti.
#           2016 Vimal Manohar
#           2017 Johns Hopkins University (author: Daniel Povey)
# Apache 2.0.

""" This script is similar to steps/nnet3/train_rnn.py but trains a
raw neural network instead of an acoustic model.
"""
from __future__ import print_function
from __future__ import division
import argparse
import logging
import pprint
import os
import sys
import traceback

sys.path.insert(0, 'steps')
import libs.nnet3.train.common as common_train_lib
import libs.common as common_lib
import libs.nnet3.train.frame_level_objf as train_lib
import libs.nnet3.report.log_parse as nnet3_log_parse

logger = logging.getLogger('libs')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - "
                              "%(funcName)s - %(levelname)s ] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info('Starting RNN trainer (train_raw_rnn.py)')


def get_args():
    """ Get args from stdin.

    The common options are defined in the object
    libs.nnet3.train.common.CommonParser.parser.
    See steps/libs/nnet3/train/common.py
    """

    parser = argparse.ArgumentParser(
        description="""Trains a raw RNN (without transition model) using
        frame-level objectives like cross-entropy and mean-squared-error.
        RNNs include LSTMs, BLSTMs and GRUs.
        RNN acoustic model training differs from feed-forward DNN training in
        the following ways
            1. RNN acoustic models train on output chunks rather than
               individual outputs
            2. The training includes additional stage of shrinkage, where the
               parameters of the model are scaled when the derivative averages
               at the non-linearities are below a threshold.
            3. RNNs can also be trained with state preservation training""",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        conflict_handler='resolve',
        parents=[common_train_lib.CommonParser(default_chunk_left_context=40).parser])

    # egs extraction options
    parser.add_argument("--egs.chunk-width", type=str, dest='chunk_width',
                        default="20",
                        help="""Number of frames per chunk in the examples
                        used to train the RNN.   Caution: if you double this you
                        should halve --trainer.samples-per-iter.  May be
                        a comma-separated list of alternatives: first width
                        is the 'principal' chunk-width, used preferentially""")

    # trainer options
    parser.add_argument("--trainer.input-model", type=str,
                        dest='input_model', default=None,
                        action=common_lib.NullstrToNoneAction,
                        help="""If specified, this model is used as initial
                        raw model (0.raw in the script) instead of initializing
                        the model from xconfig. Configs dir is not expected to
                        exist and left/right context is computed from this
                        model.""")
    parser.add_argument("--trainer.samples-per-iter", type=int,
                        dest='samples_per_iter', default=20000,
                        help="""This is really the number of egs in each
                        archive.  Each eg has 'chunk_width' frames in it--
                        for chunk_width=20, this value (20k) is equivalent
                        to the 400k number that we use as a default in
                        regular DNN training.
                        Overrides the default value in CommonParser.""")
    parser.add_argument("--trainer.prior-subset-size", type=int,
                        dest='prior_subset_size', default=20000,
                        help="Number of samples for computing priors")
    parser.add_argument("--trainer.num-jobs-compute-prior", type=int,
                        dest='num_jobs_compute_prior', default=10,
                        help="The prior computation jobs are single "
                        "threaded and run on the CPU")

    # Parameters for the optimization
    parser.add_argument("--trainer.optimization.momentum", type=float,
                        dest='momentum', default=0.5,
                        help="""Momentum used in update computation.
                        Note: we implemented it in such a way that
                        it doesn't increase the effective learning rate.
                        Overrides the default value in CommonParser""")
    parser.add_argument("--trainer.optimization.shrink-value", type=float,
                        dest='shrink_value', default=0.99,
                        help="""Scaling factor used for scaling the parameter
                        matrices when the derivative averages are below the
                        shrink-threshold at the non-linearities.  E.g. 0.99.
                        Only applicable when the neural net contains sigmoid or
                        tanh units.""")
    parser.add_argument("--trainer.optimization.shrink-saturation-threshold",
                        type=float,
                        dest='shrink_saturation_threshold', default=0.40,
                        help="""Threshold that controls when we apply the
                        'shrinkage' (i.e. scaling by shrink-value).  If the
                        saturation of the sigmoid and tanh nonlinearities in
                        the neural net (as measured by
                        steps/nnet3/get_saturation.pl) exceeds this threshold
                        we scale the parameter matrices with the
                        shrink-value.""")
    # RNN specific trainer options
    parser.add_argument("--trainer.rnn.num-chunk-per-minibatch", type=str,
                        dest='num_chunk_per_minibatch', default='100',
                        help="""Number of sequences to be processed in
                        parallel every minibatch.  May be a more general
                        rule as accepted by the --minibatch-size option of
                        nnet3-merge-egs; run that program without args to see
                        the format.""")
    parser.add_argument("--trainer.deriv-truncate-margin", type=int,
                        dest='deriv_truncate_margin', default=8,
                        help="""Margin (in input frames) around the 'required'
                        part of each chunk that the derivatives are
                        backpropagated to. E.g., 8 is a reasonable setting.
                        Note: the 'required' part of the chunk is defined by
                        the model's {left,right}-context.""")
    parser.add_argument("--compute-average-posteriors",
                        type=str, action=common_lib.StrToBoolAction,
                        choices=["true", "false"], default=False,
                        help="""If true, then the average output of the
                        network is computed and dumped as post.final.vec""")

    # General options
    parser.add_argument("--nj", type=int, default=4,
                        help="Number of parallel jobs")
    parser.add_argument("--use-dense-targets", type=str,
                        action=common_lib.StrToBoolAction,
                        default=True, choices=["true", "false"],
                        help="Train neural network using dense targets")
    parser.add_argument("--feat-dir", type=str, required=True,
                        help="Directory with features used for training "
                        "the neural network.")
    parser.add_argument("--targets-scp", type=str, required=True,
                        help="Target for training neural network.")
    parser.add_argument("--dir", type=str, required=True,
                        help="Directory to store the models and "
                        "all other files.")

    print(' '.join(sys.argv))
    print(sys.argv)

    args = parser.parse_args()

    [args, run_opts] = process_args(args)

    return [args, run_opts]


def process_args(args):
    """ Process the options got from get_args()
    """

    if not common_train_lib.validate_chunk_width(args.chunk_width):
        raise Exception("--egs.chunk-width has an invalid value")

    if not common_train_lib.validate_minibatch_size_str(args.num_chunk_per_minibatch):
        raise Exception("--trainer.rnn.num-chunk-per-minibatch has an invalid value")

    if args.chunk_left_context < 0:
        raise Exception("--egs.chunk-left-context should be non-negative")

    if args.chunk_right_context < 0:
        raise Exception("--egs.chunk-right-context should be non-negative")

    if (not os.path.exists(args.dir)):
        raise Exception("Directory specified with --dir={0} "
                        "does not exist.".format(args.dir))
    if (not os.path.exists(args.dir + "/configs") and
        (args.input_model is None or not os.path.exists(args.input_model))):
        raise Exception("Either --trainer.input-model option should be supplied, "
                        "and exist; or the {0}/configs directory should exist."
                        "{0}/configs is the output of make_configs.py"
                        "".format(args.dir))

    # set the options corresponding to args.use_gpu
    run_opts = common_train_lib.RunOpts()
    if args.use_gpu in ["true", "false"]:
        args.use_gpu = ("yes" if args.use_gpu == "true" else "no")
    if args.use_gpu in ["yes", "wait"]:
        if not common_lib.check_if_cuda_compiled():
            logger.warning(
                """You are running with one thread but you have not compiled
                   for CUDA.  You may be running a setup optimized for GPUs.
                   If you have GPUs and have nvcc installed, go to src/ and do
                   ./configure; make""")

        run_opts.train_queue_opt = "--gpu 1"
        run_opts.parallel_train_opts = "--use-gpu={}".format(args.use_gpu)
        run_opts.combine_gpu_opt = "--use-gpu={}".format(args.use_gpu)
        run_opts.combine_queue_opt = "--gpu 1"
        run_opts.prior_gpu_opt = "--use-gpu={}".format(args.use_gpu)
        run_opts.prior_queue_opt = "--gpu 1"

    else:
        logger.warning("Without using a GPU this will be very slow. "
                       "nnet3 does not yet support multiple threads.")

        run_opts.train_queue_opt = ""
        run_opts.parallel_train_opts = "--use-gpu=no"
        run_opts.combine_gpu_opt = "--use-gpu=no"
        run_opts.combine_queue_opt = ""
        run_opts.prior_gpu_opt = "--use-gpu=no"
        run_opts.prior_queue_opt = ""

    run_opts.command = args.command
    run_opts.egs_command = (args.egs_command
                            if args.egs_command is not None else
                            args.command)
    run_opts.num_jobs_compute_prior = args.num_jobs_compute_prior

    return [args, run_opts]


def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Set some variables.
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    if args.input_model is None:
        config_dir = '{0}/configs'.format(args.dir)
        var_file = '{0}/vars'.format(config_dir)

        variables = common_train_lib.parse_generic_config_vars_file(var_file)
    else:
        # If args.input_model is specified, the model left and right contexts
        # are computed using input_model.
        variables = common_train_lib.get_input_model_info(args.input_model)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial + model_left_context if
                            args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context if
                           args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -4) and os.path.exists(args.dir+"/configs/init.config") and \
       (args.input_model is None):
        logger.info("Initializing the network for computing the LDA stats")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -3) and args.egs_dir is None:
        logger.info("Generating egs")

        if args.use_dense_targets:
            target_type = "dense"
            try:
                num_targets = int(variables['num_targets'])
                if (common_lib.get_feat_dim_from_scp(args.targets_scp)
                        != num_targets):
                    raise Exception("Mismatch between num-targets provided to "
                                    "script vs configs")
            except KeyError as e:
                num_targets = -1
        else:
            target_type = "sparse"
            try:
                num_targets = int(variables['num_targets'])
            except KeyError as e:
                raise Exception("KeyError {0}: Variables need to be defined "
                                "in {1}".format(
                                    str(e), '{0}/configs'.format(args.dir)))

        train_lib.raw_model.generate_egs_using_targets(
            data=args.feat_dir, targets_scp=args.targets_scp,
            egs_dir=default_egs_dir,
            left_context=left_context,
            right_context=right_context,
            left_context_initial=left_context_initial,
            right_context_final=right_context_final,
            run_opts=run_opts,
            frames_per_eg_str=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            stage=args.egs_stage,
            target_type=target_type,
            num_targets=num_targets)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
         common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                         ivector_dim, ivector_id,
                                         left_context, right_context,
                                         left_context_initial,
                                         right_context_final))
    if args.chunk_width != frames_per_eg_str:
        raise Exception("mismatch between --egs.chunk-width and the frames_per_eg "
                        "in the egs dir {0} vs {1}".format(args.chunk_width,
                                                           frames_per_eg_str))

    if args.num_jobs_final > num_archives:
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if args.stage <= -2 and os.path.exists(args.dir+"/configs/init.config") and \
       (args.input_model is None):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if args.stage <= -1:
        logger.info("Preparing the initial network.")
        common_train_lib.prepare_initial_network(args.dir, run_opts, args.srand, args.input_model)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives)
    num_archives_processed = 0
    num_iters = int((num_archives_to_process * 2) / (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs,
            num_archives, args.max_models_combine,
            args.num_jobs_final)
    else:
        models_to_combine = None

    if (os.path.exists('{0}/valid_diagnostic.scp'.format(egs_dir))):
        if (os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir))):
            raise Exception('both {0}/valid_diagnostic.egs and '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects only one of them to exist.'
                            ''.format(egs_dir))
        use_multitask_egs = True
    else:
        if (not os.path.exists('{0}/valid_diagnostic.egs'
                               ''.format(egs_dir))):
            raise Exception('neither {0}/valid_diagnostic.egs nor '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects one of them.'
                            ''.format(egs_dir))
        use_multitask_egs = False

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return

        current_num_jobs = common_train_lib.get_current_num_jobs(
            iter, num_iters,
            args.num_jobs_initial, args.num_jobs_step, args.num_jobs_final)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.raw".format(dir=args.dir, iter=iter)

            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)

            # shrinkage_value is a scale on the parameters.
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))
            if args.shrink_value < shrinkage_value:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.should_do_shrinkage(
                                           iter, model_file,
                                           args.shrink_saturation_threshold,
                                           get_raw_nnet_from_am=False)
                                   else shrinkage_value)

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs
                     / num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}   Jobs: {2}   "
                        "Epoch: {3:0.2f}/{4:0.1f} ({5:0.1f}% complete)   "
                        "lr: {6:0.6f}   {7}".format(iter, num_iters - 1,
                                                    current_num_jobs,
                                                    epoch, args.num_epochs,
                                                    percent,
                                                    lrate, shrink_info_str))

            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                shrinkage_value=shrinkage_value,
                minibatch_size_str=args.num_chunk_per_minibatch,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                get_raw_nnet_from_am=False,
                use_multitask_egs=use_multitask_egs,
                compute_per_dim_accuracy=args.compute_per_dim_accuracy)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval,
                    get_raw_nnet_from_am=False)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.raw")
            train_lib.common.combine_models(
                dir=args.dir, num_iters=num_iters,
                models_to_combine=models_to_combine, egs_dir=egs_dir,
                minibatch_size_str=args.num_chunk_per_minibatch,
                run_opts=run_opts, chunk_width=args.chunk_width,
                get_raw_nnet_from_am=False,
                compute_per_dim_accuracy=args.compute_per_dim_accuracy,
                max_objective_evaluations=args.max_objective_evaluations,
                use_multitask_egs=use_multitask_egs)
        else:
            common_lib.force_symlink("{0}.raw".format(num_iters),
                                     "{0}/final.raw".format(args.dir))

    if args.compute_average_posteriors and args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")
        train_lib.common.compute_average_posterior(
            dir=args.dir, iter='final', egs_dir=egs_dir,
            num_archives=num_archives,
            prior_subset_size=args.prior_subset_size, run_opts=run_opts,
            get_raw_nnet_from_am=False)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs,
            get_raw_nnet_from_am=False)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/nnet3_dir_info.pl "
                               "{0}".format(args.dir))


def main():
    [args, run_opts] = get_args()
    try:
        train(args, run_opts)
        common_lib.wait_for_background_commands()
    except BaseException as e:
        # look for BaseException so we catch KeyboardInterrupt, which is
        # what we get when a background thread dies.
        if args.email is not None:
            message = ("Training session for experiment {dir} "
                       "died due to an error.".format(dir=args.dir))
            common_lib.send_mail(message, message, args.email)
        if not isinstance(e, KeyboardInterrupt):
            traceback.print_exc()
        sys.exit(1)

if __name__ == "__main__":
    main()