train_rnn.py
25.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#!/usr/bin/env python
# Copyright 2016 Vijayaditya Peddinti.
# 2016 Vimal Manohar
# Apache 2.0.
""" This script is based on steps/nnet3/lstm/train.sh
"""
from __future__ import print_function
from __future__ import division
import argparse
import logging
import os
import pprint
import shutil
import sys
import traceback
sys.path.insert(0, 'steps')
import libs.nnet3.train.common as common_train_lib
import libs.common as common_lib
import libs.nnet3.train.frame_level_objf as train_lib
import libs.nnet3.report.log_parse as nnet3_log_parse
logger = logging.getLogger('libs')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - "
"%(funcName)s - %(levelname)s ] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info('Starting RNN trainer (train_rnn.py)')
def get_args():
""" Get args from stdin.
We add compulsary arguments as named arguments for readability
The common options are defined in the object
libs.nnet3.train.common.CommonParser.parser.
See steps/libs/nnet3/train/common.py
"""
parser = argparse.ArgumentParser(
description="""Trains an RNN acoustic model using the cross-entropy
objective. RNNs include LSTMs, BLSTMs and GRUs.
RNN acoustic model training differs from feed-forward DNN training in
the following ways
1. RNN acoustic models train on output chunks rather than
individual outputs
2. The training includes additional stage of shrinkage, where
the parameters of the model are scaled when the derivative
averages at the non-linearities are below a threshold.
3. RNNs can also be trained with state preservation training""",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
conflict_handler='resolve',
parents=[common_train_lib.CommonParser(default_chunk_left_context=40).parser])
# egs extraction options
parser.add_argument("--egs.chunk-width", type=str, dest='chunk_width',
default="20",
help="""Number of frames per chunk in the examples
used to train the RNN. Caution: if you double this you
should halve --trainer.samples-per-iter. May be
a comma-separated list of alternatives: first width
is the 'principal' chunk-width, used preferentially""")
parser.add_argument("--trainer.input-model", type=str,
dest='input_model', default=None,
action=common_lib.NullstrToNoneAction,
help="""If specified, this model is used as initial
raw model (0.raw in the script) instead of initializing
the model from xconfig. Configs dir is not expected to
exist and left/right context is computed from this
model.""")
parser.add_argument("--trainer.samples-per-iter", type=int,
dest='samples_per_iter', default=20000,
help="""This is really the number of egs in each
archive. Each eg has 'chunk_width' frames in it--
for chunk_width=20, this value (20k) is equivalent
to the 400k number that we use as a default in
regular DNN training.
Overrides the default value in CommonParser.""")
parser.add_argument("--trainer.prior-subset-size", type=int,
dest='prior_subset_size', default=20000,
help="Number of samples for computing priors")
parser.add_argument("--trainer.num-jobs-compute-prior", type=int,
dest='num_jobs_compute_prior', default=10,
help="The prior computation jobs are single "
"threaded and run on the CPU")
# Parameters for the optimization
parser.add_argument("--trainer.optimization.momentum", type=float,
dest='momentum', default=0.5,
help="""Momentum used in update computation.
Note: we implemented it in such a way that
it doesn't increase the effective learning rate.
Overrides the default value in CommonParser""")
parser.add_argument("--trainer.optimization.shrink-value", type=float,
dest='shrink_value', default=0.99,
help="""Scaling factor used for scaling the parameter
matrices when the derivative averages are below the
shrink-threshold at the non-linearities. E.g. 0.99.
Only applicable when the neural net contains sigmoid or
tanh units.""")
parser.add_argument("--trainer.optimization.shrink-saturation-threshold",
type=float,
dest='shrink_saturation_threshold', default=0.40,
help="""Threshold that controls when we apply the
'shrinkage' (i.e. scaling by shrink-value). If the
saturation of the sigmoid and tanh nonlinearities in
the neural net (as measured by
steps/nnet3/get_saturation.pl) exceeds this threshold
we scale the parameter matrices with the
shrink-value.""")
# RNN specific trainer options
parser.add_argument("--trainer.rnn.num-chunk-per-minibatch", type=str,
dest='num_chunk_per_minibatch', default='100',
help="""Number of sequences to be processed in
parallel every minibatch. May be a more general
rule as accepted by the --minibatch-size option of
nnet3-merge-egs; run that program without args to see
the format.""")
parser.add_argument("--trainer.deriv-truncate-margin", type=int,
dest='deriv_truncate_margin', default=8,
help="""Margin (in input frames) around the 'required'
part of each chunk that the derivatives are
backpropagated to. E.g., 8 is a reasonable setting.
Note: the 'required' part of the chunk is defined by
the model's {left,right}-context.""")
# General options
parser.add_argument("--feat-dir", type=str, required=False,
help="Directory with features used for training "
"the neural network.")
parser.add_argument("--lang", type=str, required=False,
help="Language directory")
parser.add_argument("--ali-dir", type=str, required=True,
help="Directory with alignments used for training "
"the neural network.")
parser.add_argument("--dir", type=str, required=True,
help="Directory to store the models and "
"all other files.")
print(' '.join(sys.argv))
print(sys.argv)
args = parser.parse_args()
[args, run_opts] = process_args(args)
return [args, run_opts]
def process_args(args):
""" Process the options got from get_args()
"""
if not common_train_lib.validate_chunk_width(args.chunk_width):
raise Exception("--egs.chunk-width has an invalid value")
if not common_train_lib.validate_minibatch_size_str(args.num_chunk_per_minibatch):
raise Exception("--trainer.rnn.num-chunk-per-minibatch has an invalid value")
if args.chunk_left_context < 0:
raise Exception("--egs.chunk-left-context should be non-negative")
if args.chunk_right_context < 0:
raise Exception("--egs.chunk-right-context should be non-negative")
if (not os.path.exists(args.dir)):
raise Exception("Directory specified with --dir={0} "
"does not exist.".format(args.dir))
if (not os.path.exists(args.dir + "/configs") and
(args.input_model is None or not os.path.exists(args.input_model))):
raise Exception("Either --trainer.input-model option should be supplied, "
"and exist; or the {0}/configs directory should exist. "
"{0}/configs is the output of make_configs.py"
"".format(args.dir))
# set the options corresponding to args.use_gpu
run_opts = common_train_lib.RunOpts()
if args.use_gpu in ["true", "false"]:
args.use_gpu = ("yes" if args.use_gpu == "true" else "no")
if args.use_gpu in ["yes", "wait"]:
if not common_lib.check_if_cuda_compiled():
logger.warning(
"""You are running with one thread but you have not compiled
for CUDA. You may be running a setup optimized for GPUs.
If you have GPUs and have nvcc installed, go to src/ and do
./configure; make""")
run_opts.train_queue_opt = "--gpu 1"
run_opts.parallel_train_opts = "--use-gpu={}".format(args.use_gpu)
run_opts.combine_gpu_opt = "--use-gpu={}".format(args.use_gpu)
run_opts.combine_queue_opt = "--gpu 1"
run_opts.prior_gpu_opt = "--use-gpu={}".format(args.use_gpu)
run_opts.prior_queue_opt = "--gpu 1"
else:
logger.warning("Without using a GPU this will be very slow. "
"nnet3 does not yet support multiple threads.")
run_opts.train_queue_opt = ""
run_opts.parallel_train_opts = "--use-gpu=no"
run_opts.combine_gpu_opt = "--use-gpu=no"
run_opts.combine_queue_opt = ""
run_opts.prior_gpu_opt = "--use-gpu=no"
run_opts.prior_queue_opt = ""
run_opts.command = args.command
run_opts.egs_command = (args.egs_command
if args.egs_command is not None else
args.command)
run_opts.num_jobs_compute_prior = args.num_jobs_compute_prior
return [args, run_opts]
def train(args, run_opts):
""" The main function for training.
Args:
args: a Namespace object with the required parameters
obtained from the function process_args()
run_opts: RunOpts object obtained from the process_args()
"""
arg_string = pprint.pformat(vars(args))
logger.info("Arguments for the experiment\n{0}".format(arg_string))
# Copy phones.txt from ali-dir to dir. Later, steps/nnet3/decode.sh will
# use it to check compatibility between training and decoding phone-sets.
shutil.copy('{0}/phones.txt'.format(args.ali_dir), args.dir)
# Set some variables.
num_jobs = common_lib.get_number_of_jobs(args.ali_dir)
feat_dim = common_lib.get_feat_dim(args.feat_dir)
ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)
# split the training data into parts for individual jobs
# we will use the same number of jobs as that used for alignment
common_lib.execute_command("utils/split_data.sh {0} {1}".format(
args.feat_dir, num_jobs))
shutil.copy('{0}/tree'.format(args.ali_dir), args.dir)
with open('{0}/num_jobs'.format(args.dir), 'w') as f:
f.write('{}'.format(num_jobs))
config_dir = '{0}/configs'.format(args.dir)
var_file = '{0}/vars'.format(config_dir)
if args.input_model is None:
config_dir = '{0}/configs'.format(args.dir)
var_file = '{0}/vars'.format(config_dir)
variables = common_train_lib.parse_generic_config_vars_file(var_file)
else:
# If args.input_model is specified, the model left and right contexts
# are computed using input_model.
variables = common_train_lib.get_input_model_info(args.input_model)
# Set some variables.
try:
model_left_context = variables['model_left_context']
model_right_context = variables['model_right_context']
except KeyError as e:
raise Exception("KeyError {0}: Variables need to be defined in "
"{1}".format(str(e), '{0}/configs'.format(args.dir)))
left_context = args.chunk_left_context + model_left_context
right_context = args.chunk_right_context + model_right_context
left_context_initial = (args.chunk_left_context_initial + model_left_context if
args.chunk_left_context_initial >= 0 else -1)
right_context_final = (args.chunk_right_context_final + model_right_context if
args.chunk_right_context_final >= 0 else -1)
# Initialize as "raw" nnet, prior to training the LDA-like preconditioning
# matrix. This first config just does any initial splicing that we do;
# we do this as it's a convenient way to get the stats for the 'lda-like'
# transform.
if (args.stage <= -5) and (args.input_model is None):
logger.info("Initializing a basic network for estimating "
"preconditioning matrix")
common_lib.execute_command(
"""{command} {dir}/log/nnet_init.log \
nnet3-init --srand=-2 {dir}/configs/init.config \
{dir}/init.raw""".format(command=run_opts.command,
dir=args.dir))
default_egs_dir = '{0}/egs'.format(args.dir)
if args.stage <= -4 and args.egs_dir is None:
logger.info("Generating egs")
if args.feat_dir is None:
raise Exception("--feat-dir option is required if you don't supply --egs-dir")
train_lib.acoustic_model.generate_egs(
data=args.feat_dir, alidir=args.ali_dir,
egs_dir=default_egs_dir,
left_context=left_context,
right_context=right_context,
left_context_initial=left_context_initial,
right_context_final=right_context_final,
run_opts=run_opts,
frames_per_eg_str=args.chunk_width,
srand=args.srand,
egs_opts=args.egs_opts,
cmvn_opts=args.cmvn_opts,
online_ivector_dir=args.online_ivector_dir,
samples_per_iter=args.samples_per_iter,
stage=args.egs_stage)
if args.egs_dir is None:
egs_dir = default_egs_dir
else:
egs_dir = args.egs_dir
[egs_left_context, egs_right_context,
frames_per_eg_str, num_archives] = (
common_train_lib.verify_egs_dir(egs_dir, feat_dim,
ivector_dim, ivector_id,
left_context, right_context,
left_context_initial, right_context_final))
if args.chunk_width != frames_per_eg_str:
raise Exception("mismatch between --egs.chunk-width and the frames_per_eg "
"in the egs dir {0} vs {1}".format(args.chunk_width,
frames_per_eg_str))
if args.num_jobs_final > num_archives:
raise Exception('num_jobs_final cannot exceed the number of archives '
'in the egs directory')
# copy the properties of the egs to dir for
# use during decoding
common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)
if args.stage <= -3 and (args.input_model is None):
logger.info('Computing the preconditioning matrix for input features')
train_lib.common.compute_preconditioning_matrix(
args.dir, egs_dir, num_archives, run_opts,
max_lda_jobs=args.max_lda_jobs,
rand_prune=args.rand_prune)
if args.stage <= -2 and (args.input_model is None):
logger.info("Computing initial vector for FixedScaleComponent before"
" softmax, using priors^{prior_scale} and rescaling to"
" average 1".format(
prior_scale=args.presoftmax_prior_scale_power))
common_train_lib.compute_presoftmax_prior_scale(
args.dir, args.ali_dir, num_jobs, run_opts,
presoftmax_prior_scale_power=args.presoftmax_prior_scale_power)
if args.stage <= -1:
logger.info("Preparing the initial acoustic model.")
train_lib.acoustic_model.prepare_initial_acoustic_model(
args.dir, args.ali_dir, run_opts,
input_model=args.input_model)
# set num_iters so that as close as possible, we process the data
# $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
# $num_epochs*$num_archives, where
# avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
num_archives_to_process = int(args.num_epochs * num_archives)
num_archives_processed = 0
num_iters = int((num_archives_to_process * 2) / (args.num_jobs_initial + args.num_jobs_final))
# If do_final_combination is True, compute the set of models_to_combine.
# Otherwise, models_to_combine will be none.
if args.do_final_combination:
models_to_combine = common_train_lib.get_model_combine_iters(
num_iters, args.num_epochs,
num_archives, args.max_models_combine,
args.num_jobs_final)
else:
models_to_combine = None
min_deriv_time = None
max_deriv_time_relative = None
if args.deriv_truncate_margin is not None:
min_deriv_time = -args.deriv_truncate_margin - model_left_context
max_deriv_time_relative = \
args.deriv_truncate_margin + model_right_context
logger.info("Training will run for {0} epochs = "
"{1} iterations".format(args.num_epochs, num_iters))
for iter in range(num_iters):
if (args.exit_stage is not None) and (iter == args.exit_stage):
logger.info("Exiting early due to --exit-stage {0}".format(iter))
return
current_num_jobs = common_train_lib.get_current_num_jobs(
iter, num_iters,
args.num_jobs_initial, args.num_jobs_step, args.num_jobs_final)
if args.stage <= iter:
model_file = "{dir}/{iter}.mdl".format(dir=args.dir, iter=iter)
lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
num_iters,
num_archives_processed,
num_archives_to_process,
args.initial_effective_lrate,
args.final_effective_lrate)
shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
if shrinkage_value <= 0.5:
raise Exception("proportional-shrink={0} is too large, it gives "
"shrink-value={1}".format(args.proportional_shrink,
shrinkage_value))
if args.shrink_value < shrinkage_value:
shrinkage_value = (args.shrink_value
if common_train_lib.should_do_shrinkage(
iter, model_file,
args.shrink_saturation_threshold) else 1.0)
percent = num_archives_processed * 100.0 / num_archives_to_process
epoch = (num_archives_processed * args.num_epochs
/ num_archives_to_process)
shrink_info_str = ''
if shrinkage_value != 1.0:
shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
logger.info("Iter: {0}/{1} Jobs: {2} "
"Epoch: {3:0.2f}/{4:0.1f} ({5:0.1f}% complete) "
"lr: {6:0.6f} {7}".format(iter, num_iters - 1,
current_num_jobs,
epoch, args.num_epochs,
percent,
lrate, shrink_info_str))
train_lib.common.train_one_iteration(
dir=args.dir,
iter=iter,
srand=args.srand,
egs_dir=egs_dir,
num_jobs=current_num_jobs,
num_archives_processed=num_archives_processed,
num_archives=num_archives,
learning_rate=lrate,
dropout_edit_string=common_train_lib.get_dropout_edit_string(
args.dropout_schedule,
float(num_archives_processed) / num_archives_to_process,
iter),
train_opts=' '.join(args.train_opts),
shrinkage_value=shrinkage_value,
minibatch_size_str=args.num_chunk_per_minibatch,
min_deriv_time=min_deriv_time,
max_deriv_time_relative=max_deriv_time_relative,
momentum=args.momentum,
max_param_change=args.max_param_change,
shuffle_buffer_size=args.shuffle_buffer_size,
run_opts=run_opts,
backstitch_training_scale=args.backstitch_training_scale,
backstitch_training_interval=args.backstitch_training_interval,
compute_per_dim_accuracy=args.compute_per_dim_accuracy)
if args.cleanup:
# do a clean up everythin but the last 2 models, under certain
# conditions
common_train_lib.remove_model(
args.dir, iter-2, num_iters, models_to_combine,
args.preserve_model_interval)
if args.email is not None:
reporting_iter_interval = num_iters * args.reporting_interval
if iter % reporting_iter_interval == 0:
# lets do some reporting
[report, times, data] = (
nnet3_log_parse.generate_acc_logprob_report(args.dir))
message = report
subject = ("Update : Expt {dir} : "
"Iter {iter}".format(dir=args.dir, iter=iter))
common_lib.send_mail(message, subject, args.email)
num_archives_processed = num_archives_processed + current_num_jobs
if args.stage <= num_iters:
if args.do_final_combination:
logger.info("Doing final combination to produce final.mdl")
train_lib.common.combine_models(
dir=args.dir, num_iters=num_iters,
models_to_combine=models_to_combine, egs_dir=egs_dir,
run_opts=run_opts,
minibatch_size_str=args.num_chunk_per_minibatch,
chunk_width=args.chunk_width,
max_objective_evaluations=args.max_objective_evaluations,
compute_per_dim_accuracy=args.compute_per_dim_accuracy)
if args.stage <= num_iters + 1:
logger.info("Getting average posterior for purposes of "
"adjusting the priors.")
# If args.do_final_combination is true, we will use the combined model.
# Otherwise, we will use the last_numbered model.
real_iter = 'combined' if args.do_final_combination else num_iters
avg_post_vec_file = train_lib.common.compute_average_posterior(
dir=args.dir, iter=real_iter, egs_dir=egs_dir,
num_archives=num_archives,
prior_subset_size=args.prior_subset_size, run_opts=run_opts)
logger.info("Re-adjusting priors based on computed posteriors")
combined_or_last_numbered_model = "{dir}/{iter}.mdl".format(dir=args.dir,
iter=real_iter)
final_model = "{dir}/final.mdl".format(dir=args.dir)
train_lib.common.adjust_am_priors(args.dir, combined_or_last_numbered_model,
avg_post_vec_file, final_model,
run_opts)
if args.cleanup:
logger.info("Cleaning up the experiment directory "
"{0}".format(args.dir))
remove_egs = args.remove_egs
if args.egs_dir is not None:
# this egs_dir was not created by this experiment so we will not
# delete it
remove_egs = False
common_train_lib.clean_nnet_dir(
nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
preserve_model_interval=args.preserve_model_interval,
remove_egs=remove_egs)
# do some reporting
[report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
if args.email is not None:
common_lib.send_mail(report, "Update : Expt {0} : "
"complete".format(args.dir), args.email)
with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
f.write(report)
common_lib.execute_command("steps/info/nnet3_dir_info.pl "
"{0}".format(args.dir))
def main():
[args, run_opts] = get_args()
try:
train(args, run_opts)
common_lib.wait_for_background_commands()
except BaseException as e:
# look for BaseException so we catch KeyboardInterrupt, which is
# what we get when a background thread dies.
if args.email is not None:
message = ("Training session for experiment {dir} "
"died due to an error.".format(dir=args.dir))
common_lib.send_mail(message, message, args.email)
if not isinstance(e, KeyboardInterrupt):
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()