get_egs_discriminative2.sh
9.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0.
# This script dumps examples MPE or MMI or state-level minimum bayes risk (sMBR)
# training of neural nets. Note: for "criterion", smbr > mpe > mmi in terms of
# compatibility of the dumped egs, meaning you can use the egs dumped with
# --criterion smbr for MPE or MMI, and egs dumped with --criterion mpe for MMI
# training. The discriminative training program itself doesn't enforce this and
# it would let you mix and match them arbitrarily; we area speaking in terms of
# the correctness of the algorithm that splits the lattices into pieces.
# Begin configuration section.
cmd=run.pl
criterion=smbr
drop_frames=false # option relevant for MMI, affects how we dump examples.
samples_per_iter=400000 # measured in frames, not in "examples"
max_temp_archives=128 # maximum number of temp archives per input job, only
# affects the process of generating archives, not the
# final result.
stage=0
iter=final
cleanup=true
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 6 ]; then
echo "Usage: $0 [opts] <data> <lang> <ali-dir> <denlat-dir> <src-online-nnet2-dir> <degs-dir>"
echo " e.g.: $0 data/train data/lang exp/nnet2_online/nnet_a_online{_ali,_denlats,_degs}"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs (probably would be good to add --max-jobs-run 5 or so if using"
echo " # GridEngine (to avoid excessive NFS traffic)."
echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per"
echo " # process."
echo " --stage <stage|-8> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
echo " --criterion <criterion|smbr> # Training criterion: may be smbr, mmi or mpfe"
echo " --online-ivector-dir <dir|""> # Directory for online-estimated iVectors, used in the"
echo " # online-neural-net setup. (but you may want to use"
echo " # steps/online/nnet2/get_egs_discriminative2.sh instead)"
exit 1;
fi
data=$1
lang=$2
alidir=$3
denlatdir=$4
srcdir=$5
dir=$6
# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/num_jobs $alidir/tree \
$denlatdir/lat.1.gz $denlatdir/num_jobs $srcdir/$iter.mdl $srcdir/conf/online_nnet2_decoding.conf; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
mkdir -p $dir/log $dir/info || exit 1;
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
nj=$(cat $denlatdir/num_jobs) || exit 1; # $nj is the number of
# splits of the denlats and alignments.
nj_ali=$(cat $alidir/num_jobs) || exit 1;
sdata=$data/split$nj
utils/split_data.sh $data $nj
if [ $nj_ali -eq $nj ]; then
ali_rspecifier="ark,s,cs:gunzip -c $alidir/ali.JOB.gz |"
else
ali_rspecifier="scp:$dir/ali.scp"
if [ $stage -le 1 ]; then
echo "$0: number of jobs in den-lats versus alignments differ: dumping them as single archive and index."
alis=$(for n in $(seq $nj_ali); do echo -n "$alidir/ali.$n.gz "; done)
copy-int-vector --print-args=false \
"ark:gunzip -c $alis|" ark,scp:$dir/ali.ark,$dir/ali.scp || exit 1;
fi
fi
silphonelist=`cat $lang/phones/silence.csl` || exit 1;
cp $alidir/tree $dir
cp $lang/phones/silence.csl $dir/info || exit 1;
cp $srcdir/$iter.mdl $dir/final.mdl || exit 1;
grep -v '^--endpoint' $srcdir/conf/online_nnet2_decoding.conf >$dir/feature.conf || exit 1;
ivector_dim=$(online2-wav-dump-features --config=$dir/feature.conf --print-ivector-dim=true) || exit 1;
echo $ivector_dim > $dir/info/ivector_dim
! [ $ivector_dim -ge 0 ] && echo "$0: error getting iVector dim" && exit 1;
if [ -f $data/segments ]; then
# note: in the feature extraction, because the program online2-wav-dump-features is sensitive to the
# previous utterances within a speaker, we do the filtering after extracting the features.
echo "$0 [info]: segments file exists: using that."
feats="ark,s,cs:extract-segments scp:$sdata/JOB/wav.scp $sdata/JOB/segments ark:- | online2-wav-dump-features --config=$dir/feature.conf ark:$sdata/JOB/spk2utt ark,s,cs:- ark:- |"
else
echo "$0 [info]: no segments file exists, using wav.scp."
feats="ark,s,cs:online2-wav-dump-features --config=$dir/feature.conf ark:$sdata/JOB/spk2utt scp:$sdata/JOB/wav.scp ark:- |"
fi
if [ $stage -le 2 ]; then
echo "$0: working out number of frames of training data"
num_frames=$(steps/nnet2/get_num_frames.sh $data)
echo $num_frames > $dir/info/num_frames
# Working out total number of archives. Add one on the assumption the
# num-frames won't divide exactly, and we want to round up.
num_archives=$[$num_frames/$samples_per_iter + 1]
# the next few lines relate to how we may temporarily split each input job
# into fewer than $num_archives pieces, to avoid using an excessive
# number of filehandles.
archive_ratio=$[$num_archives/$max_temp_archives+1]
num_archives_temp=$[$num_archives/$archive_ratio]
# change $num_archives slightly to make it an exact multiple
# of $archive_ratio.
num_archives=$[$num_archives_temp*$archive_ratio]
echo $num_archives >$dir/info/num_archives || exit 1
echo $num_archives_temp >$dir/info/num_archives_temp || exit 1
frames_per_archive=$[$num_frames/$num_archives]
# note, this is the number of frames per archive prior to discarding frames.
echo $frames_per_archive > $dir/info/frames_per_archive
else
num_archives=$(cat $dir/info/num_archives) || exit 1;
num_archives_temp=$(cat $dir/info/num_archives_temp) || exit 1;
frames_per_archive=$(cat $dir/info/frames_per_archive) || exit 1;
fi
echo "$0: Splitting the data up into $num_archives archives (using $num_archives_temp temporary pieces per input job)"
echo "$0: giving samples-per-iteration of $frames_per_archive (you requested $samples_per_iter)."
# we create these data links regardless of the stage, as there are situations
# where we would want to recreate a data link that had previously been deleted.
if [ -d $dir/storage ]; then
echo "$0: creating data links for distributed storage of degs"
# See utils/create_split_dir.pl for how this 'storage' directory is created.
for x in $(seq $nj); do
for y in $(seq $num_archives_temp); do
utils/create_data_link.pl $dir/degs_orig.$x.$y.ark
done
done
for z in $(seq $num_archives); do
utils/create_data_link.pl $dir/degs.$z.ark
done
if [ $num_archives_temp -ne $num_archives ]; then
for z in $(seq $num_archives); do
utils/create_data_link.pl $dir/degs_temp.$z.ark
done
fi
fi
if [ $stage -le 3 ]; then
echo "$0: getting initial training examples by splitting lattices"
degs_list=$(for n in $(seq $num_archives_temp); do echo -n "ark:$dir/degs_orig.JOB.$n.ark "; done)
$cmd JOB=1:$nj $dir/log/get_egs.JOB.log \
nnet-get-egs-discriminative --criterion=$criterion --drop-frames=$drop_frames \
"$srcdir/$iter.mdl" "$feats" "$ali_rspecifier" "ark,s,cs:gunzip -c $denlatdir/lat.JOB.gz|" ark:- \| \
nnet-copy-egs-discriminative $const_dim_opt ark:- $degs_list || exit 1;
sleep 5; # wait a bit so NFS has time to write files.
fi
if [ $stage -le 4 ]; then
degs_list=$(for n in $(seq $nj); do echo -n "$dir/degs_orig.$n.JOB.ark "; done)
if [ $num_archives -eq $num_archives_temp ]; then
echo "$0: combining data into final archives and shuffling it"
$cmd JOB=1:$num_archives $dir/log/shuffle.JOB.log \
cat $degs_list \| nnet-shuffle-egs-discriminative --srand=JOB ark:- \
ark:$dir/degs.JOB.ark || exit 1;
else
echo "$0: combining and re-splitting data into un-shuffled versions of final archives."
archive_ratio=$[$num_archives/$num_archives_temp]
! [ $archive_ratio -gt 1 ] && echo "$0: Bad archive_ratio $archive_ratio" && exit 1;
# note: the \$[ .. ] won't be evaluated until the job gets executed. The
# aim is to write to the archives with the final numbering, 1
# ... num_archives, which is more than num_archives_temp. The list with
# \$[... ] expressions in it computes the set of final indexes for each
# temporary index.
degs_list_out=$(for n in $(seq $archive_ratio); do echo -n "ark:$dir/degs_temp.\$[((JOB-1)*$archive_ratio)+$n].ark "; done)
# e.g. if dir=foo and archive_ratio=2, we'd have
# degs_list_out='foo/degs_temp.$[((JOB-1)*2)+1].ark foo/degs_temp.$[((JOB-1)*2)+2].ark'
$cmd JOB=1:$num_archives_temp $dir/log/resplit.JOB.log \
cat $degs_list \| nnet-copy-egs-discriminative --srand=JOB ark:- \
$degs_list_out || exit 1;
fi
fi
if [ $stage -le 5 ] && [ $num_archives -ne $num_archives_temp ]; then
echo "$0: shuffling final archives."
$cmd JOB=1:$num_archives $dir/log/shuffle.JOB.log \
nnet-shuffle-egs-discriminative --srand=JOB ark:$dir/degs_temp.JOB.ark \
ark:$dir/degs.JOB.ark || exit 1
fi
if $cleanup; then
echo "$0: removing temporary archives."
for x in $(seq $nj); do
for y in $(seq $num_archives_temp); do
file=$dir/degs_orig.$x.$y.ark
[ -L $file ] && rm $(utils/make_absolute.sh $file); rm $file
done
done
if [ $num_archives_temp -ne $num_archives ]; then
for z in $(seq $num_archives); do
file=$dir/degs_temp.$z.ark
[ -L $file ] && rm $(utils/make_absolute.sh $file); rm $file
done
fi
fi
echo "$0: Done."