align_sgmm2.sh
8.74 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey)
# Korbinian Riedhammer
# Apache 2.0
# Computes training alignments and (if needed) speaker-vectors, given an
# SGMM system. If the system is built on top of SAT, you should supply
# transforms with the --transform-dir option.
# If you supply the --use-graphs option, it will use the training
# graphs from the source directory.
# Begin configuration section.
stage=0
nj=4
cmd=run.pl
use_graphs=false # use graphs from srcdir
use_gselect=false # use gselect info from srcdir [regardless, we use
# Gaussian-selection info, we might have to compute it though.]
gselect=15 # Number of Gaussian-selection indices for SGMMs.
# Begin configuration.
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
beam=10
retry_beam=40
transform_dir= # directory to find fMLLR transforms in.
# End configuration options.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh # source the path.
. parse_options.sh || exit 1;
if [ $# != 5 ]; then
echo "usage: steps/tandem/align_sgmm2.sh <data-dir1> <data-dir2> <lang-dir> <src-dir> <align-dir>"
echo "e.g.: steps/tandem/align_sgmm2.sh --transform-dir exp/tri3b {mfcc,bottleneck}/data/train data/lang \\"
echo " exp/sgmm4a exp/sgmm5a_ali"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --nj <nj> # number of parallel jobs"
echo " --use-graphs true # use graphs in src-dir"
echo " --transform-dir <transform-dir> # directory to find fMLLR transforms"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
exit 1;
fi
data1=$1
data2=$2
lang=$3
srcdir=$4
dir=$5
oov=`cat $lang/oov.int` || exit 1;
silphonelist=`cat $lang/phones/silence.csl` || exit 1;
mkdir -p $dir/log
echo $nj > $dir/num_jobs
utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
sdata1=$data1/split$nj
sdata2=$data2/split$nj
[[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1;
[[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1;
cp $srcdir/{tree,final.mdl} $dir || exit 1;
[ -f $srcdir/final.alimdl ] && cp $srcdir/final.alimdl $dir
cp $srcdir/final.occs $dir;
## Set up features.
splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options.
normft2=`cat $srcdir/normft2 2>/dev/null`
if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
case $feat_type in
delta)
echo "$0: feature type is $feat_type"
;;
lda)
echo "$0: feature type is $feat_type"
cp $srcdir/{lda,final}.mat $dir/ || exit 1;
;;
*) echo "$0: invalid feature type $feat_type" && exit 1;
esac
# set up feature stream 1; this are usually spectral features, so we will add
# deltas or splice them
feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- |"
if [ "$feat_type" == "delta" ]; then
feats1="$feats1 add-deltas ark:- ark:- |"
elif [ "$feat_type" == "lda" ]; then
feats1="$feats1 splice-feats $splice_opts ark:- ark:- | transform-feats $dir/lda.mat ark:- ark:- |"
fi
# set up feature stream 2; this are usually bottleneck or posterior features,
# which may be normalized if desired
feats2="scp:$sdata2/JOB/feats.scp"
if [ "$normft2" == "true" ]; then
feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |"
fi
# assemble tandem features
feats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |"
# add transformation, if applicable
if [ "$feat_type" == "lda" ]; then
feats="$feats transform-feats $dir/final.mat ark:- ark:- |"
fi
# splicing/normalization options
cp $srcdir/{splice_opts,normft2,tandem} $dir 2>/dev/null
if [ ! -z "$transform_dir" ]; then
echo "$0: using transforms from $transform_dir"
[ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" && exit 1;
[ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \
&& echo "$0: #jobs mismatch with transform-dir." && exit 1;
feats="$feats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |"
elif grep 'transform-feats --utt2spk' $srcdir/log/acc.0.1.log 2>/dev/null; then
echo "$0: **WARNING**: you seem to be using an SGMM system trained with transforms,"
echo " but you are not providing the --transform-dir option during alignment."
fi
##
## Set up model and alignment model.
mdl=$srcdir/final.mdl
if [ -f $srcdir/final.alimdl ]; then
alimdl=$srcdir/final.alimdl
else
alimdl=$srcdir/final.mdl
fi
[ ! -f $mdl ] && echo "$0: no such model $mdl" && exit 1;
## Work out where we're getting the graphs from.
if $use_graphs; then
[ "$nj" != "`cat $srcdir/num_jobs`" ] && \
echo "$0: you specified --use-graphs true, but #jobs mismatch." && exit 1;
[ ! -f $srcdir/fsts.1.gz ] && echo "No graphs in $srcdir" && exit 1;
graphdir=$srcdir
ln.pl $srcdir/fsts.*.gz $dir
else
graphdir=$dir
if [ $stage -le 0 ]; then
echo "$0: compiling training graphs"
tra="ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata1/JOB/text|";
$cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
compile-train-graphs --read-disambig-syms=$lang/phones/disambig.int $dir/tree $dir/final.mdl $lang/L.fst "$tra" \
"ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
fi
fi
## Work out where we're getting the Gaussian-selection info from
if $use_gselect; then
[ "$nj" != "`cat $srcdir/num_jobs`" ] && \
echo "$0: you specified --use-gselect true, but #jobs mismatch." && exit 1;
[ ! -f $srcdir/gselect.1.gz ] && echo "No gselect info in $srcdir" && exit 1;
graphdir=$srcdir
gselect_opt="--gselect=ark:gunzip -c $srcdir/gselect.JOB.gz|"
ln.pl $srcdir/gselect.*.gz $dir
else
graphdir=$dir
if [ $stage -le 1 ]; then
echo "$0: computing Gaussian-selection info"
# Note: doesn't matter whether we use $alimdl or $mdl, they will
# have the same gselect info.
$cmd JOB=1:$nj $dir/log/gselect.JOB.log \
sgmm2-gselect --full-gmm-nbest=$gselect $alimdl \
"$feats" "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1;
fi
gselect_opt="--gselect=ark:gunzip -c $dir/gselect.JOB.gz|"
fi
if [ $alimdl == $mdl ]; then
# Speaker-independent decoding-- just one pass. Not normal.
T=`sgmm2-info $mdl | grep 'speaker vector space' | awk '{print $NF}'` || exit 1;
[ "$T" -ne 0 ] && echo "No alignment model, yet speaker vector space nonempty" && exit 1;
if [ $stage -le 2 ]; then
echo "$0: aligning data in $data using model $mdl (no speaker-vectors)"
$cmd JOB=1:$nj $dir/log/align_pass1.JOB.log \
sgmm2-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam $alimdl \
"ark:gunzip -c $graphdir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
echo "$0: done aligning data."
exit 0;
fi
# Continue with system with speaker vectors.
if [ $stage -le 2 ]; then
echo "$0: aligning data in $data using model $alimdl"
$cmd JOB=1:$nj $dir/log/align_pass1.JOB.log \
sgmm2-align-compiled $scale_opts "$gselect_opt" --beam=$beam --retry-beam=$retry_beam $alimdl \
"ark:gunzip -c $graphdir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/pre_ali.JOB.gz" || exit 1;
fi
if [ $stage -le 3 ]; then
echo "$0: computing speaker vectors (1st pass)"
$cmd JOB=1:$nj $dir/log/spk_vecs1.JOB.log \
ali-to-post "ark:gunzip -c $dir/pre_ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $alimdl ark:- ark:- \| \
sgmm2-post-to-gpost "$gselect_opt" $alimdl "$feats" ark:- ark:- \| \
sgmm2-est-spkvecs-gpost --spk2utt=ark:$sdata1/JOB/spk2utt \
$mdl "$feats" ark,s,cs:- ark:$dir/pre_vecs.JOB || exit 1;
fi
if [ $stage -le 4 ]; then
echo "$0: computing speaker vectors (2nd pass)"
$cmd JOB=1:$nj $dir/log/spk_vecs2.JOB.log \
ali-to-post "ark:gunzip -c $dir/pre_ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $alimdl ark:- ark:- \| \
sgmm2-est-spkvecs --spk2utt=ark:$sdata1/JOB/spk2utt "$gselect_opt" \
--spk-vecs=ark:$dir/pre_vecs.JOB $mdl "$feats" ark,s,cs:- ark:$dir/vecs.JOB || exit 1;
rm $dir/pre_vecs.*
fi
if [ $stage -le 5 ]; then
echo "$0: doing final alignment."
$cmd JOB=1:$nj $dir/log/align_pass2.JOB.log \
sgmm2-align-compiled $scale_opts "$gselect_opt" --beam=$beam --retry-beam=$retry_beam \
--utt2spk=ark:$sdata1/JOB/utt2spk --spk-vecs=ark:$dir/vecs.JOB \
$mdl "ark:gunzip -c $graphdir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
rm $dir/pre_ali.*.gz
echo "$0: done aligning data."
utils/summarize_warnings.pl $dir/log
exit 0;