train_lvtln.sh
14.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#!/bin/bash
# Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey)
# Copyright 2014 Vimal Manohar
# This training script trains linear-VTLN models starting from an existing
# system based on either LDA+MLLT or delta+delta-delta features.
# Works with either mfcc or plp features, but you need to set the
# --base-feat-type option.
# The resulting system can be used with align_lvtln.sh and/or decode_lvtln.sh
# to get VTLN warping factors for data, for warped data extraction, or (for
# the training data) you can use the warping factors this script outputs
# in $dir/final.warp
#
# Apache 2.0
# Begin configuration.
stage=-6 # This allows restarting after partway, when something when wrong.
config=
cmd=run.pl
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
realign_iters="10 20 30";
num_iters=35 # Number of iterations of training
max_iter_inc=25 # Last iter to increase #Gauss on.
beam=10
retry_beam=40
boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment
power=0.25 # Exponent for number of gaussians according to occurrence counts
cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves
cmvn_opts= # you can supply e.g. --cmvn-opts "--norm-vars=true" to turn on variance
# normalization, but only if base system is the delta type, not LDA.
lvtln_iters="2 4 6 8 10 12 14 16 20"; # iters on which to recompute LVTLN transform"
num_utt_lvtln_init=200; # number of utterances (subset) to initialize
# LVTLN transform. Not too critical.
min_warp=0.85
max_warp=1.25
warp_step=0.01
base_feat_type=mfcc # or could be PLP.
logdet_scale=0.0
# End configuration.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh;
. parse_options.sh || exit 1;
num_classes=$(perl -e "print int(1.5 + ($max_warp - $min_warp) / $warp_step);") || exit 1;
default_class=$(perl -e "print int(0.5 + (1.0 - $min_warp) / $warp_step);") || exit 1;
if [ $# != 6 ]; then
echo "Usage: $0 <num-leaves> <tot-gauss> <data-dir> <lang-dir> <alignment-dir> <exp-dir>"
echo "e.g.: $0 2000 10000 data/train_si84_half data/lang exp/mono_ali exp/tri1"
echo "main options (for others, see top of script file)"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --config <config-file> # config containing options"
echo " --stage <stage> # stage to do partial re-run from."
exit 1;
fi
numleaves=$1
totgauss=$2
data=$3
lang=$4
alidir=$5
dir=$6
for f in $alidir/final.mdl $alidir/ali.1.gz $data/feats.scp $lang/phones.txt $data/wav.scp; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
numgauss=$numleaves
incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter increment for #Gauss
oov=`cat $lang/oov.int` || exit 1;
silphonelist=`cat $lang/phones/silence.csl` || exit 1;
ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1;
nj=`cat $alidir/num_jobs` || exit 1;
splice_opts=`cat $alidir/splice_opts 2>/dev/null`
mkdir -p $dir/log
echo $nj > $dir/num_jobs
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
sdata=$data/split$nj;
split_data.sh $data $nj || exit 1;
cp $alidir/splice_opts $dir 2>/dev/null
if [ ! -f $alidir/final.mat ]; then
[ $(cat $alidir/cmvn_opts 2>/dev/null | wc -c) -gt 1 ] && [ -z "$cmvn_opts" ] && \
echo "$0: warning: ignoring CMVN options from $alidir.";
echo $cmvn_opts > $dir/cmvn_opts
echo "$0: Using delta+delta-delta features since $alidir/final.mat does not exist"
sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |"
feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |"
# for the subsets of features that we use to estimate the linear transforms, we don't
# bother with CMVN. This will give us wrong offsets on the transforms, but it will end
# up not mattering because we allow an arbitrary offset (bias) term when we apply
# these transforms.
featsub_warped="ark:add-deltas ark:$dir/feats.CLASS.ark ark:- |" # you need to define CLASS when invoking $cmd.
featsub_unwarped="ark:add-deltas ark:$dir/feats.$default_class.ark ark:- |"
else
echo "$0: Using LDA features"
[ ! -z "$cmvn_opts" ] && echo "$0: you cannot supply --cmvn-opts if base system is LDA."
cp $alidir/final.mat $alidir/full.mat $alidir/splice_opts $alidir/cmvn_opts $dir 2>/dev/null
cmvn_opts=`cat $dir/cmvn_opts 2>/dev/null`
sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |"
featsub_warped="ark:splice-feats $splice_opts ark:$dir/feats.CLASS.ark ark:- | transform-feats $dir/final.mat ark:- ark:- |" # you need to define CLASS when invoking $cmd.
featsub_unwarped="ark:splice-feats $splice_opts ark:$dir/feats.$default_class.ark ark:- | transform-feats $dir/final.mat ark:- ark:- |"
fi
if [ -f $data/utt2warp ]; then
echo "$0: source data directory $data appears to already have VTLN.";
exit 1;
fi
# create a small subset of utterances for purposes of initializing the LVTLN transform
# utils/shuffle_list.pl is deterministic, unlike sort -R.
cat $data/utt2spk | awk '{print $1}' | utils/shuffle_list.pl | \
head -n $num_utt_lvtln_init > $dir/utt_subset
if [ $stage -le -6 ]; then
echo "$0: computing warped subset of features"
if [ -f $data/segments ]; then
echo "$0 [info]: segments file exists: using that."
subset_feats="utils/filter_scp.pl $dir/utt_subset $data/segments | extract-segments scp:$data/wav.scp - ark:- "
else
echo "$0 [info]: no segments file exists: using wav.scp directly."
subset_feats="utils/filter_scp.pl $dir/utt_subset $data/wav.scp | wav-copy scp:- ark:- "
fi
rm $dir/.error 2>/dev/null
for c in $(seq 0 $[$num_classes-1]); do
this_warp=$(perl -e "print ($min_warp + ($c*$warp_step));")
$cmd $dir/log/compute_warped_feats.$c.log \
$subset_feats \| compute-${base_feat_type}-feats --verbose=2 \
--config=conf/${base_feat_type}.conf --vtln-warp=$this_warp ark:- ark:- \| \
copy-feats --compress=true ark:- ark:$dir/feats.$c.ark || touch $dir/.error &
done
wait;
if [ -f $dir/.error ]; then
echo "$0: Computing warped features failed: check $dir/log/compute_warped_feats.*.log"
exit 1;
fi
fi
if ! utils/filter_scp.pl $dir/utt_subset $data/feats.scp | \
compare-feats --threshold=0.98 scp:- ark:$dir/feats.$default_class.ark >&/dev/null; then
echo "$0: features stored on disk differ from those computed with no warping."
echo " Possibly your feature type is wrong (--base-feat-type option)"
exit 1;
fi
if [ -f $data/segments ]; then
subset_utts="ark:extract-segments scp:$sdata/JOB/wav.scp $sdata/JOB/segments ark:- |"
else
echo "$0 [info]: no segments file exists: using wav.scp directly."
subset_utts="ark:wav-copy scp:$sdata/JOB/wav.scp ark:- |"
fi
if [ $stage -le -5 ]; then
echo "$0: initializing base LVTLN transforms in $dir/0.lvtln (ignore warnings below)"
dim=$(feat-to-dim "$featsub_unwarped" - ) || exit 1;
$cmd $dir/log/init_lvtln.log \
gmm-init-lvtln --dim=$dim --num-classes=$num_classes --default-class=$default_class \
$dir/0.lvtln || exit 1;
$cmd JOB=1:$nj $dir/log/get_weights.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz |" ark:- \| \
weight-silence-post 0.0 "$silphonelist" $alidir/final.mdl ark:- ark:- \| \
post-to-weights ark:- "ark,scp:$dir/weights.JOB.ark,$dir/weights.JOB.scp" || exit 1
for n in `seq 1 $nj`; do
cat $dir/weights.$n.scp
done > $dir/weights.scp
for c in $(seq 0 $[$num_classes-1]); do
this_warp=$(perl -e "print ($min_warp + ($c*$warp_step));")
orig_feats=ark:$dir/feats.$default_class.ark
warped_feats=ark:$dir/feats.$c.ark
logfile=$dir/log/train_special.$c.log
this_featsub_warped="$(echo $featsub_warped | sed s/CLASS/$c/)"
if ! gmm-train-lvtln-special --warp=$this_warp --normalize-var=true \
--weights-in="scp:$dir/weights.scp" \
$c $dir/0.lvtln $dir/0.lvtln \
"$featsub_unwarped" "$this_featsub_warped" 2>$logfile; then
echo "$0: Error training LVTLN transform, see $logfile";
exit 1;
fi
done
rm $dir/final.lvtln 2>/dev/null
ln -s 0.lvtln $dir/final.lvtln
fi
if [ $stage -le -4 ]; then
echo "$0: computing initial LVTLN transforms for speakers"
if [ -f $alidir/final.alimdl ]; then
# if the base system was trained with SAT, it's probably better
# to use the .alimdl, trained speaker-independent, to get the
# LVTLN transforms (LVTLN may be closer to an unadapted system).
echo "$0: to get initial LVTLN transforms, using $alidir/final.alimdl"
srcmodel=$alidir/final.alimdl
else
srcmodel=$alidir/final.mdl
fi
$cmd JOB=1:$nj $dir/log/lvtln.0.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 "$silphonelist" $alidir/final.mdl ark:- ark:- \| \
gmm-post-to-gpost $srcmodel "$sifeats" ark:- ark:- \| \
gmm-est-lvtln-trans --logdet-scale=$logdet_scale --verbose=1 \
--spk2utt=ark:$sdata/JOB/spk2utt $srcmodel \
$dir/0.lvtln "$sifeats" ark:- ark:$dir/trans.JOB ark,t:$dir/warp.0.JOB || exit 1
# consolidate the warps into one file.
for j in $(seq $nj); do cat $dir/warp.0.$j; done > $dir/warp.0
rm $dir/warp.0.*
fi
if [ $stage -le -3 ]; then
echo "$0: accumulating tree stats"
$cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \
acc-tree-stats --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \
"ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1;
sum-tree-stats $dir/treeacc $dir/*.treeacc 2>$dir/log/sum_tree_acc.log || exit 1;
rm $dir/*.treeacc
fi
if [ $stage -le -2 ]; then
echo "$0: getting questions for tree-building, via clustering"
# preparing questions, roots file...
cluster-phones $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1;
cat $lang/phones/extra_questions.int >> $dir/questions.int
compile-questions $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1;
echo "$0: building the tree"
$cmd $dir/log/build_tree.log \
build-tree --verbose=1 --max-leaves=$numleaves \
--cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \
$dir/questions.qst $lang/topo $dir/tree || exit 1;
gmm-init-model --write-occs=$dir/1.occs \
$dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/log/init_model.log || exit 1;
grep 'no stats' $dir/log/init_model.log && echo "This is a bad warning.";
gmm-mixup --mix-up=$numgauss $dir/1.mdl $dir/1.occs $dir/1.mdl 2>$dir/log/mixup.log || exit 1;
rm $dir/treeacc
fi
if [ $stage -le -1 ]; then
# Convert the alignments.
echo "$0: converting alignments from $alidir to use current tree"
$cmd JOB=1:$nj $dir/log/convert.JOB.log \
convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \
"ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
if [ $stage -le 0 ]; then
echo "$0: compiling graphs of transcripts"
$cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
compile-train-graphs --read-disambig-syms=$lang/phones/disambig.int $dir/tree $dir/1.mdl $lang/L.fst \
"ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $data/split$nj/JOB/text |" \
"ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
fi
x=1
while [ $x -lt $num_iters ]; do
echo "$0: training pass $x"
if echo $realign_iters | grep -w $x >/dev/null; then
if [ $stage -le $x ]; then
echo "$0: aligning data"
mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |"
$cmd JOB=1:$nj $dir/log/align.$x.JOB.log \
gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \
"ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \
"ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
fi
if echo $lvtln_iters | grep -w $x >/dev/null; then
if [ $stage -le $x ]; then
echo "Re-estimating LVTLN transforms"
$cmd JOB=1:$nj $dir/log/lvtln.$x.JOB.log \
ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \
gmm-post-to-gpost $dir/$x.mdl "$feats" ark:- ark:- \| \
gmm-est-lvtln-trans --logdet-scale=$logdet_scale --verbose=1 \
--spk2utt=ark:$sdata/JOB/spk2utt $dir/$x.mdl \
$dir/0.lvtln "$sifeats" ark:- ark:$dir/new_trans.JOB ark,t:$dir/warp.$x.JOB || exit 1
# consolidate the warps into one file.
for j in $(seq $nj); do mv $dir/new_trans.$j $dir/trans.$j; done
for j in $(seq $nj); do cat $dir/warp.$x.$j; done > $dir/warp.$x
rm $dir/warp.$x.*
fi
fi
if [ $stage -le $x ]; then
$cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
gmm-acc-stats-ali $dir/$x.mdl "$feats" \
"ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1;
$cmd $dir/log/update.$x.log \
gmm-est --mix-up=$numgauss --power=$power \
--write-occs=$dir/$[$x+1].occs $dir/$x.mdl \
"gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1;
rm $dir/$x.mdl $dir/$x.*.acc
rm $dir/$x.occs
fi
[ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss];
x=$[$x+1];
done
if [ $stage -le $x ]; then
# Accumulate stats for "alignment model"-- this model is computed with the
# speaker-independent features, but matches Gaussian-for-Gaussian with the
# final speaker-adapted model.
$cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \
ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \
gmm-acc-stats-twofeats $dir/$x.mdl "$feats" "$sifeats" \
ark,s,cs:- $dir/$x.JOB.acc || exit 1;
[ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1;
# Update model.
$cmd $dir/log/est_alimdl.log \
gmm-est --power=$power --remove-low-count-gaussians=false $dir/$x.mdl \
"gmm-sum-accs - $dir/$x.*.acc|" $dir/$x.alimdl || exit 1;
rm $dir/$x.*.acc
fi
if true; then # Diagnostics
last_iter=$(echo 0 $lvtln_iters | awk '{print $NF;}')
ln -sf warp.$last_iter $dir/final.warp
if [ -f $data/spk2gender ]; then
# To make it easier to eyeball the male and female speakers' warps
# separately, separate them out.
for g in m f; do # means: for gender in male female
cat $dir/final.warp | \
utils/filter_scp.pl <(grep -w $g $data/spk2gender | awk '{print $1}') > $dir/final.warp.$g
echo -n "The last few warp factors for gender $g are: "
tail -n 10 $dir/final.warp.$g | awk '{printf("%s ", $2);}';
echo
done
fi
fi
ln -sf $x.mdl $dir/final.mdl
ln -sf $x.occs $dir/final.occs
ln -sf $x.alimdl $dir/final.alimdl
# Summarize warning messages...
utils/summarize_warnings.pl $dir/log
echo "$0: Done training LVTLN system in $dir"