make_lexicon_fst.py 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
#!/usr/bin/env python3

# Copyright   2018  Johns Hopkins University (author: Daniel Povey)
# Apache 2.0.

# see get_args() below for usage message.
import argparse
import os
import sys
import math
import re

# The use of latin-1 encoding does not preclude reading utf-8.  latin-1
# encoding means "treat words as sequences of bytes", and it is compatible
# with utf-8 encoding as well as other encodings such as gbk, as long as the
# spaces are also spaces in ascii (which we check).  It is basically how we
# emulate the behavior of python before python3.
sys.stdout = open(1, 'w', encoding='latin-1', closefd=False)
sys.stderr = open(2, 'w', encoding='latin-1', closefd=False)

def get_args():
    parser = argparse.ArgumentParser(description="""This script creates the
       text form of a lexicon FST, to be compiled by fstcompile using the
       appropriate symbol tables (phones.txt and words.txt) .  It will mostly
       be invoked indirectly via utils/prepare_lang.sh.  The output goes to
       the stdout.""")

    parser.add_argument('--sil-phone', dest='sil_phone', type=str,
                        help="""Text form of optional-silence phone, e.g. 'SIL'.  See also
                        the --silprob option.""")
    parser.add_argument('--sil-prob', dest='sil_prob', type=float, default=0.0,
                        help="""Probability of silence between words (including at the
                        beginning and end of word sequences).  Must be in the range [0.0, 1.0].
                        This refers to the optional silence inserted by the lexicon; see
                        the --silphone option.""")
    parser.add_argument('--sil-disambig', dest='sil_disambig', type=str,
                        help="""Disambiguation symbol to disambiguate silence, e.g. #5.
                        Will only be supplied if you are creating the version of L.fst
                        with disambiguation symbols, intended for use with cyclic G.fst.
                        This symbol was introduced to fix a rather obscure source of
                        nondeterminism of CLG.fst, that has to do with reordering of
                        disambiguation symbols and phone symbols.""")
    parser.add_argument('--left-context-phones', dest='left_context_phones', type=str,
                        help="""Only relevant if --nonterminals is also supplied; this relates
                        to grammar decoding (see http://kaldi-asr.org/doc/grammar.html or
                        src/doc/grammar.dox).  Format is a list of left-context phones,
                        in text form, one per line.  E.g. data/lang/phones/left_context_phones.txt""")
    parser.add_argument('--nonterminals', type=str,
                        help="""If supplied, --left-context-phones must also be supplied.
                        List of user-defined nonterminal symbols such as #nonterm:contact_list,
                        one per line.  E.g. data/local/dict/nonterminals.txt.""")
    parser.add_argument('lexiconp', type=str,
                        help="""Filename of lexicon with pronunciation probabilities
                        (normally lexiconp.txt), with lines of the form 'word prob p1 p2...',
                        e.g. 'a   1.0    ay'""")
    args = parser.parse_args()
    return args


def read_lexiconp(filename):
    """Reads the lexiconp.txt file in 'filename', with lines like 'word pron p1 p2 ...'.
    Returns a list of tuples (word, pron_prob, pron), where 'word' is a string,
   'pron_prob', a float, is the pronunciation probability (which must be >0.0
    and would normally be <=1.0),  and 'pron' is a list of strings representing phones.
    An element in the returned list might be ('hello', 1.0, ['h', 'eh', 'l', 'ow']).
    """

    ans = []
    found_empty_prons = False
    found_large_pronprobs = False
    # See the comment near the top of this file, RE why we use latin-1.
    with open(filename, 'r', encoding='latin-1') as f:
        whitespace = re.compile("[ \t]+")
        for line in f:
            a = whitespace.split(line.strip(" \t\r\n"))
            if len(a) < 2:
                print("{0}: error: found bad line '{1}' in lexicon file {2} ".format(
                    sys.argv[0], line.strip(" \t\r\n"), filename), file=sys.stderr)
                sys.exit(1)
            word = a[0]
            if word == "<eps>":
                # This would clash with the epsilon symbol normally used in OpenFst.
                print("{0}: error: found <eps> as a word in lexicon file "
                      "{1}".format(line.strip(" \t\r\n"), filename), file=sys.stderr)
                sys.exit(1)
            try:
                pron_prob = float(a[1])
            except:
                print("{0}: error: found bad line '{1}' in lexicon file {2}, 2nd field "
                      "should be pron-prob".format(sys.argv[0], line.strip(" \t\r\n"), filename),
                      file=sys.stderr)
                sys.exit(1)
            prons = a[2:]
            if pron_prob <= 0.0:
                print("{0}: error: invalid pron-prob in line '{1}' of lexicon file {1} ".format(
                    sys.argv[0], line.strip(" \t\r\n"), filename), file=sys.stderr)
                sys.exit(1)
            if len(prons) == 0:
                found_empty_prons = True
            ans.append( (word, pron_prob, prons) )
            if pron_prob > 1.0:
                found_large_pronprobs = True
    if found_empty_prons:
        print("{0}: warning: found at least one word with an empty pronunciation "
              "in lexicon file {1}.".format(sys.argv[0], filename),
              file=sys.stderr)
    if found_large_pronprobs:
        print("{0}: warning: found at least one word with pron-prob >1.0 "
              "in {1}".format(sys.argv[0], filename), file=sys.stderr)


    if len(ans) == 0:
        print("{0}: error: found no pronunciations in lexicon file {1}".format(
            sys.argv[0], filename), file=sys.stderr)
        sys.exit(1)
    return ans


def write_nonterminal_arcs(start_state, loop_state, next_state,
                           nonterminals, left_context_phones):
    """This function relates to the grammar-decoding setup, see
    kaldi-asr.org/doc/grammar.html.  It is called from write_fst_no_silence
    and write_fst_silence, and writes to the stdout some extra arcs
    in the lexicon FST that relate to nonterminal symbols.
    See the section "Special symbols in L.fst,
    kaldi-asr.org/doc/grammar.html#grammar_special_l.
       start_state: the start-state of L.fst.
       loop_state:  the state of high out-degree in L.fst where words leave
                  and enter.
       next_state: the number from which this function can start allocating its
                  own states.  the updated value of next_state will be returned.
       nonterminals: the user-defined nonterminal symbols as a list of
          strings, e.g. ['#nonterm:contact_list', ... ].
       left_context_phones: a list of phones that may appear as left-context,
          e.g. ['a', 'ah', ... '#nonterm_bos'].
    """
    shared_state = next_state
    next_state += 1
    final_state = next_state
    next_state += 1

    print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
        src=start_state, dest=shared_state,
        phone='#nonterm_begin', word='#nonterm_begin',
        cost=0.0))

    for nonterminal in nonterminals:
        print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
            src=loop_state, dest=shared_state,
            phone=nonterminal, word=nonterminal,
            cost=0.0))
    # this_cost equals log(len(left_context_phones)) but the expression below
    # better captures the meaning.  Applying this cost to arcs keeps the FST
    # stochatic (sum-to-one, like an HMM), so that if we do weight pushing
    # things won't get weird.  In the grammar-FST code when we splice things
    # together we will cancel out this cost, see the function CombineArcs().
    this_cost = -math.log(1.0 / len(left_context_phones))

    for left_context_phone in left_context_phones:
        print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
            src=shared_state, dest=loop_state,
            phone=left_context_phone, word='<eps>', cost=this_cost))
    # arc from loop-state to a final-state with #nonterm_end as ilabel and olabel
    print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
        src=loop_state, dest=final_state,
        phone='#nonterm_end', word='#nonterm_end', cost=0.0))
    print("{state}\t{final_cost}".format(
        state=final_state, final_cost=0.0))
    return next_state



def write_fst_no_silence(lexicon, nonterminals=None, left_context_phones=None):
    """Writes the text format of L.fst to the standard output.  This version is for
    when --sil-prob=0.0, meaning there is no optional silence allowed.

      'lexicon' is a list of 3-tuples (word, pron-prob, prons) as returned by
        read_lexiconp().
     'nonterminals', which relates to grammar decoding (see kaldi-asr.org/doc/grammar.html),
        is either None, or the user-defined nonterminal symbols as a list of
        strings, e.g. ['#nonterm:contact_list', ... ].
     'left_context_phones', which also relates to grammar decoding, and must be
        supplied if 'nonterminals' is supplied is either None or a list of
        phones that may appear as left-context, e.g. ['a', 'ah', ... '#nonterm_bos'].
    """

    loop_state = 0
    next_state = 1  # the next un-allocated state, will be incremented as we go.
    for (word, pronprob, pron) in lexicon:
        cost = -math.log(pronprob)
        cur_state = loop_state
        for i in range(len(pron) - 1):
            print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
                src=cur_state,
                dest=next_state,
                phone=pron[i],
                word=(word if i == 0 else '<eps>'),
                cost=(cost if i == 0 else 0.0)))
            cur_state = next_state
            next_state += 1

        i = len(pron) - 1  # note: i == -1 if pron is empty.
        print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
            src=cur_state,
            dest=loop_state,
            phone=(pron[i] if i >= 0 else '<eps>'),
            word=(word if i <= 0 else '<eps>'),
            cost=(cost if i <= 0 else 0.0)))

    if nonterminals is not None:
        next_state = write_nonterminal_arcs(
            loop_state, loop_state, next_state,
            nonterminals, left_context_phones)

    print("{state}\t{final_cost}".format(
        state=loop_state,
        final_cost=0.0))


def write_fst_with_silence(lexicon, sil_prob, sil_phone, sil_disambig,
                           nonterminals=None, left_context_phones=None):
    """Writes the text format of L.fst to the standard output.  This version is for
       when --sil-prob != 0.0, meaning there is optional silence
     'lexicon' is a list of 3-tuples (word, pron-prob, prons)
         as returned by read_lexiconp().
     'sil_prob', which is expected to be strictly between 0.. and 1.0, is the
         probability of silence
     'sil_phone' is the silence phone, e.g. "SIL".
     'sil_disambig' is either None, or the silence disambiguation symbol, e.g. "#5".
     'nonterminals', which relates to grammar decoding (see kaldi-asr.org/doc/grammar.html),
        is either None, or the user-defined nonterminal symbols as a list of
        strings, e.g. ['#nonterm:contact_list', ... ].
     'left_context_phones', which also relates to grammar decoding, and must be
        supplied if 'nonterminals' is supplied is either None or a list of
        phones that may appear as left-context, e.g. ['a', 'ah', ... '#nonterm_bos'].
    """

    assert sil_prob > 0.0 and sil_prob < 1.0
    sil_cost = -math.log(sil_prob)
    no_sil_cost = -math.log(1.0 - sil_prob);

    start_state = 0
    loop_state = 1  # words enter and leave from here
    sil_state = 2   # words terminate here when followed by silence; this state
                    # has a silence transition to loop_state.
    next_state = 3  # the next un-allocated state, will be incremented as we go.


    print('{src}\t{dest}\t{phone}\t{word}\t{cost}'.format(
        src=start_state, dest=loop_state,
        phone='<eps>', word='<eps>', cost=no_sil_cost))
    print('{src}\t{dest}\t{phone}\t{word}\t{cost}'.format(
        src=start_state, dest=sil_state,
        phone='<eps>', word='<eps>', cost=sil_cost))
    if sil_disambig is None:
        print('{src}\t{dest}\t{phone}\t{word}\t{cost}'.format(
            src=sil_state, dest=loop_state,
            phone=sil_phone, word='<eps>', cost=0.0))
    else:
        sil_disambig_state = next_state
        next_state += 1
        print('{src}\t{dest}\t{phone}\t{word}\t{cost}'.format(
            src=sil_state, dest=sil_disambig_state,
            phone=sil_phone, word='<eps>', cost=0.0))
        print('{src}\t{dest}\t{phone}\t{word}\t{cost}'.format(
            src=sil_disambig_state, dest=loop_state,
            phone=sil_disambig, word='<eps>', cost=0.0))


    for (word, pronprob, pron) in lexicon:
        pron_cost = -math.log(pronprob)
        cur_state = loop_state
        for i in range(len(pron) - 1):
            print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
                src=cur_state, dest=next_state,
                phone=pron[i],
                word=(word if i == 0 else '<eps>'),
                cost=(pron_cost if i == 0 else 0.0)))
            cur_state = next_state
            next_state += 1

        i = len(pron) - 1  # note: i == -1 if pron is empty.
        print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
            src=cur_state,
            dest=loop_state,
            phone=(pron[i] if i >= 0 else '<eps>'),
            word=(word if i <= 0 else '<eps>'),
            cost=no_sil_cost + (pron_cost if i <= 0 else 0.0)))
        print("{src}\t{dest}\t{phone}\t{word}\t{cost}".format(
            src=cur_state,
            dest=sil_state,
            phone=(pron[i] if i >= 0 else '<eps>'),
            word=(word if i <= 0 else '<eps>'),
            cost=sil_cost + (pron_cost if i <= 0 else 0.0)))

    if nonterminals is not None:
        next_state = write_nonterminal_arcs(
            start_state, loop_state, next_state,
            nonterminals, left_context_phones)

    print("{state}\t{final_cost}".format(
        state=loop_state,
        final_cost=0.0))




def write_words_txt(orig_lines, highest_numbered_symbol, nonterminals, filename):
    """Writes updated words.txt to 'filename'.  'orig_lines' is the original lines
       in the words.txt file as a list of strings (without the newlines);
       highest_numbered_symbol is the highest numbered symbol in the original
       words.txt; nonterminals is a list of strings like '#nonterm:foo'."""
    with open(filename, 'w', encoding='latin-1') as f:
        for l in orig_lines:
            print(l, file=f)
        cur_symbol = highest_numbered_symbol + 1
        for n in [ '#nonterm_begin', '#nonterm_end' ] + nonterminals:
            print("{0} {1}".format(n, cur_symbol), file=f)
            cur_symbol = cur_symbol + 1


def read_nonterminals(filename):
    """Reads the user-defined nonterminal symbols in 'filename', checks that
       it has the expected format and has no duplicates, and returns the nonterminal
       symbols as a list of strings, e.g.
       ['#nonterm:contact_list', '#nonterm:phone_number', ... ]. """
    ans = [line.strip(" \t\r\n") for line in open(filename, 'r', encoding='latin-1')]
    if len(ans) == 0:
        raise RuntimeError("The file {0} contains no nonterminals symbols.".format(filename))
    for nonterm in ans:
        if nonterm[:9] != '#nonterm:':
            raise RuntimeError("In file '{0}', expected nonterminal symbols to start with '#nonterm:', found '{1}'"
                               .format(filename, nonterm))
    if len(set(ans)) != len(ans):
        raise RuntimeError("Duplicate nonterminal symbols are present in file {0}".format(filename))
    return ans

def read_left_context_phones(filename):
    """Reads, checks, and returns a list of left-context phones, in text form, one
       per line.  Returns a list of strings, e.g. ['a', 'ah', ..., '#nonterm_bos' ]"""
    ans = [line.strip(" \t\r\n") for line in open(filename, 'r', encoding='latin-1')]
    if len(ans) == 0:
        raise RuntimeError("The file {0} contains no left-context phones.".format(filename))
    whitespace = re.compile("[ \t]+")
    for s in ans:
        if len(whitespace.split(s)) != 1:
            raise RuntimeError("The file {0} contains an invalid line '{1}'".format(filename, s)   )

    if len(set(ans)) != len(ans):
        raise RuntimeError("Duplicate nonterminal symbols are present in file {0}".format(filename))
    return ans


def is_token(s):
    """Returns true if s is a string and is space-free."""
    if not isinstance(s, str):
        return False
    whitespace = re.compile("[ \t\r\n]+")
    split_str = whitespace.split(s);
    return len(split_str) == 1 and s == split_str[0]


def main():
    args = get_args()

    lexicon = read_lexiconp(args.lexiconp)

    if args.nonterminals is None:
        nonterminals, left_context_phones = None, None
    else:
        if args.left_context_phones is None:
            print("{0}: if --nonterminals is specified, --left-context-phones must also "
                  "be specified".format(sys.argv[0]))
            sys.exit(1)
        nonterminals = read_nonterminals(args.nonterminals)
        left_context_phones = read_left_context_phones(args.left_context_phones)

    if args.sil_prob == 0.0:
          write_fst_no_silence(lexicon,
                               nonterminals=nonterminals,
                               left_context_phones=left_context_phones)
    else:
        # Do some checking that the options make sense.
        if args.sil_prob < 0.0 or args.sil_prob >= 1.0:
            print("{0}: invalid value specified --sil-prob={1}".format(
                sys.argv[0], args.sil_prob), file=sys.stderr)
            sys.exit(1)

        if not is_token(args.sil_phone):
            print("{0}: you specified --sil-prob={1} but --sil-phone is set "
                  "to '{2}'".format(sys.argv[0], args.sil_prob, args.sil_phone),
                  file=sys.stderr)
            sys.exit(1)
        if args.sil_disambig is not None and not is_token(args.sil_disambig):
            print("{0}: invalid value --sil-disambig='{1}' was specified."
                  "".format(sys.argv[0], args.sil_disambig), file=sys.stderr)
            sys.exit(1)
        write_fst_with_silence(lexicon, args.sil_prob, args.sil_phone,
                               args.sil_disambig,
                               nonterminals=nonterminals,
                               left_context_phones=left_context_phones)



#    (lines, highest_symbol) = read_words_txt(args.input_words_txt)
#    nonterminals = read_nonterminals(args.nonterminal_symbols_list)
#    write_words_txt(lines, highest_symbol, nonterminals, args.output_words_txt)


if __name__ == '__main__':
      main()