chain-supervision-test.cc
23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
// chain/chain-supervision-test.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "chain/chain-supervision.h"
#include "chain/chain-numerator.h"
#include "fstext/fstext-lib.h"
#include "cudamatrix/cu-device.h"
#include "cudamatrix/cu-vector.h"
#include "hmm/hmm-test-utils.h"
#include "chain/chain-den-graph.h"
#include "chain/chain-denominator.h"
#include "hmm/hmm-utils.h"
namespace kaldi {
namespace chain {
// computes a phone language-model FST, which has only monophone context.
void ComputeExamplePhoneLanguageModel(const std::vector<int32> &phones,
fst::StdVectorFst *g_fst) {
g_fst->DeleteStates();
int32 state = g_fst->AddState();
g_fst->SetStart(state);
Vector<BaseFloat> probs(phones.size() + 1);
probs.SetRandn();
probs.ApplyPow(2.0);
probs.Add(0.01);
probs.Scale(1.0 / probs.Sum());
for (size_t i = 0; i < phones.size(); i++) {
int32 phone = phones[i];
fst::StdArc arc(phone, phone,
fst::TropicalWeight(-log(probs(i))), state);
g_fst->AddArc(state, arc);
}
g_fst->SetFinal(state, fst::TropicalWeight(-log(probs(phones.size()))));
}
void ComputeExampleDenFst(const ContextDependency &ctx_dep,
const TransitionModel &trans_model,
fst::StdVectorFst *den_graph) {
using fst::StdVectorFst;
using fst::StdArc;
StdVectorFst phone_lm;
ComputeExamplePhoneLanguageModel(trans_model.GetPhones(), &phone_lm);
CreateDenominatorFst(ctx_dep, trans_model, phone_lm, den_graph);
}
void TestSupervisionIo(const Supervision &supervision) {
bool binary = (RandInt(0, 1) == 0);
std::ostringstream os;
supervision.Write(os, binary);
std::istringstream is(os.str());
Supervision supervision2;
if (RandInt(0, 1) == 0)
supervision2 = supervision; // test reading already-existing object.
supervision2.Read(is, binary);
std::ostringstream os2;
supervision2.Write(os2, binary);
KALDI_ASSERT(os.str() == os2.str());
if (binary) {
KALDI_ASSERT(supervision == supervision2);
}
// also test swap and constructor
Supervision supervision3(supervision), supervision4;
supervision3.Swap(&supervision4);
KALDI_ASSERT(supervision == supervision4);
}
void TestSupervisionNumerator(const Supervision &supervision) {
CuMatrix<BaseFloat> nnet_output(supervision.num_sequences *
supervision.frames_per_sequence,
supervision.label_dim);
nnet_output.SetRandn();
NumeratorComputation num(supervision, nnet_output);
// Test that derivs are accurate.
BaseFloat forward_prob = num.Forward();
CuMatrix<BaseFloat> nnet_output_deriv(nnet_output.NumRows(),
nnet_output.NumCols());
num.Backward(&nnet_output_deriv);
int32 dim = 3;
Vector<BaseFloat> predicted_objf_changes(dim),
observed_objf_changes(dim);
BaseFloat delta = 1.0e-04;
for (int32 p = 0; p < dim; p++) {
CuMatrix<BaseFloat> new_nnet_output(nnet_output.NumRows(),
nnet_output.NumCols());
new_nnet_output.SetRandn();
new_nnet_output.Scale(delta);
predicted_objf_changes(p) = TraceMatMat(nnet_output_deriv, new_nnet_output,
kTrans);
new_nnet_output.AddMat(1.0, nnet_output);
NumeratorComputation num2(supervision, new_nnet_output);
observed_objf_changes(p) = num2.Forward() - forward_prob;
}
KALDI_LOG << "Predicted objf changes are: "
<< predicted_objf_changes;
KALDI_LOG << "Observed objf changes are: "
<< observed_objf_changes;
{
BaseFloat correction = (predicted_objf_changes.Sum() - observed_objf_changes.Sum()) /
predicted_objf_changes.Dim();
observed_objf_changes.Add(correction);
KALDI_LOG << "Correcting observed objf changes for statistical effects, to "
<< observed_objf_changes;
KALDI_ASSERT(predicted_objf_changes.ApproxEqual(observed_objf_changes, 0.1));
}
{
CuVector<BaseFloat> rand(nnet_output.NumRows());
rand.SetRandn();
CuMatrix<BaseFloat> nnet_output_mod(nnet_output);
nnet_output_mod.AddVecToCols(1.0, rand);
NumeratorComputation num_mod(supervision, nnet_output_mod);
BaseFloat forward_prob_mod = num_mod.Forward();
BaseFloat predicted_change = rand.Sum(),
observed_change = forward_prob_mod - forward_prob;
KALDI_ASSERT(fabs(predicted_change - observed_change) < 0.1);
}
}
void TestSupervisionAppend(const TransitionModel &trans_model,
const Supervision &supervision) {
int32 num_append = RandInt(1,5);
std::vector<const Supervision*> input(num_append);
for (int32 i = 0; i < num_append; i++)
input[i] = &supervision;
Supervision output;
MergeSupervision(input, &output);
KALDI_ASSERT(output.frames_per_sequence ==
supervision.frames_per_sequence &&
output.num_sequences == num_append);
int32 tot_sequences_in = 0, tot_sequences_out = 0,
tot_frames_in = 0, tot_frames_out = 0;
for (int32 i = 0; i < num_append; i++) {
tot_sequences_in += input[i]->num_sequences;
tot_frames_in += input[i]->num_sequences *
input[i]->frames_per_sequence;
}
tot_sequences_out += output.num_sequences;
tot_frames_out += output.num_sequences *
output.frames_per_sequence;
KALDI_ASSERT(tot_sequences_out == tot_sequences_in &&
tot_frames_out == tot_frames_in);
TestSupervisionIo(output);
TestSupervisionNumerator(output);
output.Check(trans_model);
}
void TestSupervisionReattached(const TransitionModel &trans_model,
const Supervision &supervision,
const Supervision &reattached_supervision) {
using namespace fst;
KALDI_LOG << "testing reattached";
KALDI_ASSERT(reattached_supervision.frames_per_sequence *
reattached_supervision.num_sequences ==
supervision.frames_per_sequence * supervision.num_sequences &&
reattached_supervision.weight == supervision.weight &&
reattached_supervision.label_dim == supervision.label_dim);
UniformArcSelector<StdArc> selector;
RandGenOptions<UniformArcSelector<StdArc> > randgen_opts(selector);
StdVectorFst fst_path;
RandGen(supervision.fst, &fst_path, randgen_opts);
StdVectorFst composed;
Compose(fst_path, reattached_supervision.fst, &composed);
Connect(&composed);
KALDI_ASSERT(composed.NumStates() != 0);
supervision.Check(trans_model);
reattached_supervision.Check(trans_model);
}
void TestSupervisionFrames(const Supervision &supervision) {
using namespace fst;
UniformArcSelector<StdArc> selector;
RandGenOptions<UniformArcSelector<StdArc> > randgen_opts(selector);
VectorFst<StdArc> rand_path;
RandGen(supervision.fst, &rand_path, randgen_opts);
std::vector<int32> isymbols_out, osymbols_out;
fst::TropicalWeight weight_out;
bool ans = GetLinearSymbolSequence(rand_path, &isymbols_out, &osymbols_out,
&weight_out);
KALDI_ASSERT(ans);
KALDI_ASSERT(isymbols_out == osymbols_out);
KALDI_ASSERT(isymbols_out.size() ==
static_cast<size_t>(supervision.num_sequences *
supervision.frames_per_sequence));
KALDI_ASSERT(weight_out == fst::TropicalWeight::One());
bool test = true;
// make sure epsilon free
KALDI_ASSERT(supervision.fst.Properties(fst::kNoEpsilons, test) != 0);
// make sure acceptor
KALDI_ASSERT(supervision.fst.Properties(fst::kAcceptor, test) != 0);
}
void ChainTrainingTest(const DenominatorGraph &den_graph,
const Supervision &supervision) {
int32 num_sequences = supervision.num_sequences,
frames_per_sequence = supervision.frames_per_sequence;
if (frames_per_sequence == 1) // this will break some code.
return;
CuMatrix<BaseFloat> nnet_output(num_sequences * frames_per_sequence,
den_graph.NumPdfs());
bool zero_output = (RandInt(0, 3) == 0);
if (!zero_output)
nnet_output.SetRandn();
ChainTrainingOptions opts;
if (RandInt(0, 1) == 1)
opts.leaky_hmm_coefficient = 0.2;
CuMatrix<BaseFloat> nnet_output_deriv(nnet_output.NumRows(),
nnet_output.NumCols(),
kUndefined);
BaseFloat objf, l2_term, weight;
ComputeChainObjfAndDeriv(opts, den_graph, supervision,
nnet_output, &objf, &l2_term, &weight,
&nnet_output_deriv);
{
// make sure each row of nnet_output_deriv sums to one (shift invariance of
// the nnet output).
CuVector<BaseFloat> nnet_output_deriv_row_sums(nnet_output_deriv.NumRows());
nnet_output_deriv_row_sums.AddColSumMat(1.0, nnet_output_deriv, 0.0);
KALDI_ASSERT(nnet_output_deriv_row_sums.Norm(2.0) < 0.1);
}
KALDI_LOG << "Chain objf per frame is " << (objf / weight)
<< " over " << weight << " frames (weighted)";
{ // a check
BaseFloat output_deriv_sum = nnet_output_deriv.Sum();
KALDI_LOG << "Sum of nnet-output-deriv is " << output_deriv_sum
<< " vs. expected 0.";
KALDI_ASSERT(output_deriv_sum < 0.2);
}
KALDI_ASSERT(objf <= 0.0);
int32 num_tries = 5;
BaseFloat epsilon = 1.0e-04;
Vector<BaseFloat> predicted_objf_changes(num_tries),
observed_objf_changes(num_tries);
for (int32 p = 0; p < num_tries; p++) {
CuMatrix<BaseFloat> nnet_delta_output(nnet_output.NumRows(),
nnet_output.NumCols());
nnet_delta_output.SetRandn();
nnet_delta_output.Scale(epsilon);
predicted_objf_changes(p) = TraceMatMat(nnet_output_deriv,
nnet_delta_output, kTrans);
CuMatrix<BaseFloat> nnet_output_perturbed(nnet_delta_output);
nnet_output_perturbed.AddMat(1.0, nnet_output);
BaseFloat objf_modified, l2_term_modified, weight_modified;
ComputeChainObjfAndDeriv(opts, den_graph, supervision,
nnet_output_perturbed,
&objf_modified, &l2_term_modified,
&weight_modified,
NULL);
observed_objf_changes(p) = objf_modified - objf;
}
KALDI_LOG << "Predicted objf changes are " << predicted_objf_changes;
KALDI_LOG << "Observed objf changes are " << observed_objf_changes;
{
Vector<BaseFloat> error(predicted_objf_changes);
error.AddVec(-1.0, observed_objf_changes);
KALDI_LOG << "num-sequences = " << num_sequences << ", frames-per-sequence = "
<< frames_per_sequence << ", relative accuracy is "
<< (error.Norm(2.0) / predicted_objf_changes.Norm(2.0));
}
{
// we get inaccuracy for long segments, I think because there is a bias when we
// add random noise for it to increase the likelihood (for winner-take-all reasons)
// and for long utterances this bias adds up over the frames and tends to
// outweigh the random component that the gradient predicts (which will tend to
// cancel). Try to correct for this...
BaseFloat correction = (predicted_objf_changes.Sum() - observed_objf_changes.Sum()) /
predicted_objf_changes.Dim();
observed_objf_changes.Add(correction);
KALDI_LOG << "Correcting observed objf changes for statistical effects, to "
<< observed_objf_changes;
if (frames_per_sequence > 2 &&
predicted_objf_changes.Norm(2.0) > 0.1 * epsilon) {
// if we only have the initial and final frames, due to the scaling-down
// of pdfs not in the numerator sequence the derivative might be zero,
// which would cause problems doing the comparison.
// note, epsilon = 1.0e-04.
KALDI_ASSERT(predicted_objf_changes.ApproxEqual(observed_objf_changes, 0.25));
}
}
}
void TestSupervisionSplitting(const ContextDependency &ctx_dep,
const TransitionModel &trans_model,
const Supervision &supervision) {
fst::StdVectorFst den_fst, normalization_fst;
ComputeExampleDenFst(ctx_dep, trans_model, &den_fst);
DenominatorGraph den_graph(den_fst, trans_model.NumPdfs());
den_graph.GetNormalizationFst(den_fst, &normalization_fst);
SupervisionSplitter splitter(supervision);
int32 num_frames = supervision.num_sequences * supervision.frames_per_sequence,
frames_per_range = RandInt(3, 10);
std::vector<int32> range_starts;
SplitIntoRanges(num_frames, frames_per_range, &range_starts);
int32 num_ranges = range_starts.size();
std::vector<Supervision> split_supervision(num_ranges);
for (int32 i = 0; i < num_ranges; i++) {
splitter.GetFrameRange(range_starts[i], frames_per_range,
&split_supervision[i]);
bool ans = AddWeightToSupervisionFst(normalization_fst,
&split_supervision[i]);
KALDI_ASSERT(ans);
split_supervision[i].Check(trans_model);
}
if (num_ranges > 0) {
TestSupervisionIo(split_supervision[RandInt(0, num_ranges - 1)]);
TestSupervisionFrames(split_supervision[RandInt(0, num_ranges - 1)]);
Supervision reattached_supervision;
std::vector<const Supervision*> to_append(num_ranges);
for (int32 i = 0; i < num_ranges; i++)
to_append[i] = &(split_supervision[i]);
MergeSupervision(to_append, &reattached_supervision);
ChainTrainingTest(den_graph, reattached_supervision);
if (num_frames % frames_per_range == 0) {
TestSupervisionReattached(trans_model,
supervision,
reattached_supervision);
}
}
}
void ChainDenominatorTest(const DenominatorGraph &den_graph) {
int32 num_sequences = RandInt(1, 5),
frames_per_sequence = RandInt(10, 20);
if (RandInt(0, 3) == 0)
frames_per_sequence *= 30; // test how it works on long sequences
CuMatrix<BaseFloat> nnet_output(num_sequences * frames_per_sequence,
den_graph.NumPdfs());
bool zero_output = (RandInt(0, 3) == 0);
if (!zero_output)
nnet_output.SetRandn();
ChainTrainingOptions opts;
DenominatorComputation denominator_computation(opts, den_graph,
num_sequences, nnet_output);
BaseFloat forward_prob = denominator_computation.Forward(),
per_frame = forward_prob / (num_sequences * frames_per_sequence);
KALDI_LOG << "Forward prob is " << forward_prob
<< " = " << per_frame << " per frame.";
CuMatrix<BaseFloat> nnet_output_deriv(nnet_output.NumRows(),
nnet_output.NumCols());
denominator_computation.Backward(1.0, &nnet_output_deriv);
{ // a check
BaseFloat output_deriv_sum = nnet_output_deriv.Sum();
KALDI_LOG << "Sum of nnet-output-deriv is " << output_deriv_sum
<< " vs. expected " << (num_sequences * frames_per_sequence);
KALDI_ASSERT(output_deriv_sum - BaseFloat(num_sequences * frames_per_sequence) <
10.0);
}
int32 num_tries = 5;
BaseFloat epsilon = 1.0e-04;
Vector<BaseFloat> predicted_objf_changes(num_tries),
observed_objf_changes(num_tries);
for (int32 p = 0; p < num_tries; p++) {
CuMatrix<BaseFloat> nnet_delta_output(nnet_output.NumRows(),
nnet_output.NumCols());
nnet_delta_output.SetRandn();
nnet_delta_output.Scale(epsilon);
predicted_objf_changes(p) = TraceMatMat(nnet_output_deriv,
nnet_delta_output, kTrans);
CuMatrix<BaseFloat> nnet_output_perturbed(nnet_delta_output);
nnet_output_perturbed.AddMat(1.0, nnet_output);
DenominatorComputation denominator_computation_perturbed(opts, den_graph,
num_sequences,
nnet_output_perturbed);
BaseFloat forward_prob_perturbed = denominator_computation_perturbed.Forward();
observed_objf_changes(p) = forward_prob_perturbed - forward_prob;
}
KALDI_LOG << "Predicted objf changes are " << predicted_objf_changes;
KALDI_LOG << "Observed objf changes are " << observed_objf_changes;
{
Vector<BaseFloat> error(predicted_objf_changes);
error.AddVec(-1.0, observed_objf_changes);
KALDI_LOG << "num-sequences = " << num_sequences << ", frames-per-sequence = "
<< frames_per_sequence << ", relative error is "
<< (error.Norm(2.0) / predicted_objf_changes.Norm(2.0));
}
if (frames_per_sequence < 50) {
// we get inaccuracy for long segments, I think because there is a bias when we
// add random noise for it to increase the likelihood (for winner-take-all reasons)
// and for long utterances this bias adds up over the frames and tends to
// outweigh the random component that the gradient predicts (which will tend to
// cancel).
KALDI_ASSERT(predicted_objf_changes.ApproxEqual(observed_objf_changes, 0.25));
}
}
void ChainSupervisionTest() {
ContextDependency *ctx_dep;
TransitionModel *trans_model = GenRandTransitionModel(&ctx_dep);
const std::vector<int32> &phones = trans_model->GetPhones();
int32 subsample_factor = RandInt(1, 3);
int32 phone_sequence_length = RandInt(1, 20);
std::vector<std::pair<int32, int32> > phones_durations(phone_sequence_length);
CompactLattice clat;
int32 cur_state = clat.AddState();
clat.SetStart(cur_state);
for (int32 i = 0; i < phone_sequence_length; i++) {
int32 phone = phones[RandInt(0, phones.size() - 1)];
int32 min_length = trans_model->GetTopo().MinLength(phone),
headroom = 5,
duration = RandInt(subsample_factor * min_length,
subsample_factor * min_length + headroom);
phones_durations[i].first = phone;
phones_durations[i].second = duration;
int32 next_state = clat.AddState();
std::vector<int32> ones(duration, 1);
clat.AddArc(cur_state,
CompactLatticeArc(phone, phone,
CompactLatticeWeight(LatticeWeight::One(),
ones), next_state));
cur_state = next_state;
}
clat.SetFinal(cur_state, CompactLatticeWeight::One());
ProtoSupervision proto_sup1, proto_sup2;
SupervisionOptions opts;
opts.frame_subsampling_factor = subsample_factor;
bool ans1 = AlignmentToProtoSupervision(opts, phones_durations, &proto_sup1),
ans2 = PhoneLatticeToProtoSupervision(opts, clat, &proto_sup2);
KALDI_ASSERT(ans1 && ans2);
KALDI_ASSERT(proto_sup1 == proto_sup2);
Supervision supervision;
if (!ProtoSupervisionToSupervision(*ctx_dep, *trans_model,
proto_sup1, true, &supervision)) {
// we shouldn't fail because we multiplied by
// 'subsample_factor' when creating the duration.
KALDI_ERR << "Failed creating supervision.";
}
supervision.Check(*trans_model);
TestSupervisionIo(supervision);
TestSupervisionSplitting(*ctx_dep, *trans_model, supervision);
TestSupervisionAppend(*trans_model, supervision);
{
fst::StdVectorFst den_fst;
ComputeExampleDenFst(*ctx_dep, *trans_model, &den_fst);
DenominatorGraph den_graph(den_fst, trans_model->NumPdfs());
ChainDenominatorTest(den_graph);
if (RandInt(0, 1) == 0)
supervision.weight = 0.5;
fst::StdVectorFst normalization_fst;
den_graph.GetNormalizationFst(den_fst, &normalization_fst);
// add the weight to the numerator FST so we can assert objf <= 0.
bool ans = AddWeightToSupervisionFst(normalization_fst, &supervision);
KALDI_ASSERT(ans);
// TODO: still have to test for appended sequences.
ChainTrainingTest(den_graph, supervision);
}
// Test IO for supervisions which have transition id's as labels
if (!ProtoSupervisionToSupervision(*ctx_dep, *trans_model,
proto_sup1, false, &supervision)) {
KALDI_ERR << "Failed creating supervision with transition-ids as labels.";
} else {
supervision.Check(*trans_model);
TestSupervisionIo(supervision);
}
delete ctx_dep;
delete trans_model;
}
void AddArc(int32 from, int32 to,
fst::StdVectorFst *fst) {
fst->AddArc(from, fst::StdArc(0, 0, fst::TropicalWeight::One(), to));
}
void BreadthFirstTest() {
using namespace fst;
StdVectorFst fst;
for (int32 i = 0; i < 6; i++)
fst.AddState();
fst.SetStart(0);
fst.SetFinal(2, TropicalWeight::One());
AddArc(0, 3, &fst);
AddArc(0, 4, &fst);
AddArc(4, 5, &fst);
AddArc(3, 5, &fst);
AddArc(5, 1, &fst);
AddArc(1, 2, &fst);
SortBreadthFirstSearch(&fst);
KALDI_ASSERT(fst.Properties(fst::kTopSorted, true) != 0);
}
// this function tests SplitIntoRanges() and GetWeightsForRanges().
void TestRanges() {
int32 frames_per_range = RandInt(20, 100),
overlap = RandInt(0, 10),
num_frames = RandInt(15, 500);
std::vector<int32> range_starts;
SplitIntoRanges(num_frames - overlap, frames_per_range - overlap,
&range_starts);
Vector<BaseFloat> weights_orig(num_frames),
weights_new(num_frames);
int32 num_ranges = range_starts.size();
for (int32 i = 0; i < num_ranges; i++) {
int32 start_t = range_starts[i];
for (int32 j = 0; j < frames_per_range; j++) {
int32 t = start_t + j;
weights_orig(t) += 1.0;
}
}
std::vector<Vector<BaseFloat> > weights;
GetWeightsForRanges(frames_per_range,
range_starts, &weights);
for (int32 i = 0; i < num_ranges; i++) {
KALDI_LOG << "weights[" << i << "] = "
<< weights[i];
int32 start_t = range_starts[i];
for (int32 j = 0; j < frames_per_range; j++) {
int32 t = start_t + j;
weights_new(t) += weights[i](j);
}
}
KALDI_LOG << "Orig weights are " << weights_orig;
KALDI_LOG << "New weights are " << weights_new;
for (int32 t = 0; t < num_frames; t++) {
if (weights_orig(t) != 0.0) {
KALDI_ASSERT(fabs(weights_new(t) - 1.0) < 0.001);
} else {
KALDI_ASSERT(weights_new(t) == 0.0);
}
}
}
} // namespace chain
} // namespace kaldi
int main() {
using namespace kaldi;
SetVerboseLevel(1);
#if HAVE_CUDA == 1
int32 loop = 0;
for (loop = 0; loop < 2; loop++) {
CuDevice::Instantiate().SetDebugStrideMode(true);
if (loop == 0)
CuDevice::Instantiate().SelectGpuId("no");
else
CuDevice::Instantiate().SelectGpuId("yes");
#endif
for (int32 i = 0; i < 3; i++) {
kaldi::chain::ChainSupervisionTest();
kaldi::chain::BreadthFirstTest();
}
kaldi::chain::TestRanges();
#if HAVE_CUDA == 1
}
CuDevice::Instantiate().PrintProfile();
#endif
}