nnet3-chain-get-egs.cc
19.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
// chainbin/nnet3-chain-get-egs.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "hmm/posterior.h"
#include "nnet3/nnet-example.h"
#include "nnet3/nnet-chain-example.h"
#include "nnet3/nnet-example-utils.h"
namespace kaldi {
namespace nnet3 {
/**
This function does all the processing for one utterance, and outputs the
supervision objects to 'example_writer'.
@param [in] trans_mdl The transition-model for the tree for which we
are dumping egs. This is expected to be
NULL if the input examples already contain
pdfs-ids+1 in their FSTs, and non-NULL if the
input examples contain transition-ids in
their FSTs and need to be converted to
unconstrained 'e2e' (end-to-end) style FSTs
which contain pdf-ids+1 but which won't enforce any
alignment constraints interior to the
utterance.
@param [in] normalization_fst A version of denominator FST used to add weights
to the created supervision. It is
actually an FST expected to have the
labels as (pdf-id+1). If this has no states,
we skip the final stage of egs preparation
in which we compose with the normalization
FST, and you should do it later with
nnet3-chain-normalize-egs.
@param [in] feats Input feature matrix
@param [in] ivector_feats Online iVector matrix sub-sampled at a
rate of "ivector_period".
If NULL, iVector will not be added
as in input to the egs.
@param [in] ivector_period Number of frames between iVectors in
"ivector_feats" matrix.
@param [in] supervision Supervision for 'chain' training created
from the binary chain-get-supervision.
This is expected to be at a
sub-sampled rate if
--frame-subsampling-factor > 1.
@param [in] deriv_weights Vector of per-frame weights that scale
a frame's gradient during backpropagation.
If NULL, this is equivalent to specifying
a vector of all 1s.
The dimension of the vector is expected
to be the supervision size, which is
at a sub-sampled rate if
--frame-subsampling-factor > 1.
@param [in] supervision_length_tolerance
Tolerance for difference in num-frames-subsampled between
supervision and deriv weights, and also between supervision
and input frames.
@param [in] utt_id Utterance-id
@param [in] compress If true, compresses the feature matrices.
@param [out] utt_splitter Pointer to UtteranceSplitter object,
which helps to split an utterance into
chunks. This also stores some stats.
@param [out] example_writer Pointer to egs writer.
**/
static bool ProcessFile(const TransitionModel *trans_mdl,
const fst::StdVectorFst &normalization_fst,
const GeneralMatrix &feats,
const MatrixBase<BaseFloat> *ivector_feats,
int32 ivector_period,
const chain::Supervision &supervision,
const VectorBase<BaseFloat> *deriv_weights,
int32 supervision_length_tolerance,
const std::string &utt_id,
bool compress,
UtteranceSplitter *utt_splitter,
NnetChainExampleWriter *example_writer) {
KALDI_ASSERT(supervision.num_sequences == 1);
int32 num_input_frames = feats.NumRows(),
num_output_frames = supervision.frames_per_sequence;
int32 frame_subsampling_factor = utt_splitter->Config().frame_subsampling_factor;
if (deriv_weights && (std::abs(deriv_weights->Dim() - num_output_frames)
> supervision_length_tolerance)) {
KALDI_WARN << "For utterance " << utt_id
<< ", mismatch between deriv-weights dim and num-output-frames"
<< "; " << deriv_weights->Dim() << " vs " << num_output_frames;
return false;
}
if (!utt_splitter->LengthsMatch(utt_id, num_input_frames, num_output_frames,
supervision_length_tolerance))
return false; // LengthsMatch() will have printed a warning.
// It can happen if people mess with the feature frame-width options, that
// there can be small mismatches in length between the supervisions (derived
// from lattices) and the features; if this happens, and
// supervision_length_tolerance is nonzero, and the num-input-frames is larger
// than plausible for this num_output_frames, then it could lead us to try to
// access frames in the supervision that don't exist. The following
// if-statement is to prevent that happening.
if (num_input_frames > num_output_frames * frame_subsampling_factor)
num_input_frames = num_output_frames * frame_subsampling_factor;
std::vector<ChunkTimeInfo> chunks;
utt_splitter->GetChunksForUtterance(num_input_frames, &chunks);
if (chunks.empty()) {
KALDI_WARN << "Not producing egs for utterance " << utt_id
<< " because it is too short: "
<< num_input_frames << " frames.";
return false;
}
chain::SupervisionSplitter sup_splitter(supervision);
for (size_t c = 0; c < chunks.size(); c++) {
ChunkTimeInfo &chunk = chunks[c];
int32 start_frame_subsampled = chunk.first_frame / frame_subsampling_factor,
num_frames_subsampled = chunk.num_frames / frame_subsampling_factor;
chain::Supervision supervision_part;
sup_splitter.GetFrameRange(start_frame_subsampled,
num_frames_subsampled,
&supervision_part);
if (trans_mdl != NULL)
ConvertSupervisionToUnconstrained(*trans_mdl, &supervision_part);
if (normalization_fst.NumStates() > 0 &&
!AddWeightToSupervisionFst(normalization_fst,
&supervision_part)) {
KALDI_WARN << "For utterance " << utt_id << ", feature frames "
<< chunk.first_frame << " to "
<< (chunk.first_frame + chunk.num_frames)
<< ", FST was empty after composing with normalization FST. "
<< "This should be extremely rare (a few per corpus, at most)";
}
int32 first_frame = 0; // we shift the time-indexes of all these parts so
// that the supervised part starts from frame 0.
NnetChainExample nnet_chain_eg;
nnet_chain_eg.outputs.resize(1);
SubVector<BaseFloat> output_weights(
&(chunk.output_weights[0]),
static_cast<int32>(chunk.output_weights.size()));
if (!deriv_weights) {
NnetChainSupervision nnet_supervision("output", supervision_part,
output_weights,
first_frame,
frame_subsampling_factor);
nnet_chain_eg.outputs[0].Swap(&nnet_supervision);
} else {
Vector<BaseFloat> this_deriv_weights(num_frames_subsampled);
for (int32 i = 0; i < num_frames_subsampled; i++) {
int32 t = i + start_frame_subsampled;
if (t < deriv_weights->Dim())
this_deriv_weights(i) = (*deriv_weights)(t);
}
KALDI_ASSERT(output_weights.Dim() == num_frames_subsampled);
this_deriv_weights.MulElements(output_weights);
NnetChainSupervision nnet_supervision("output", supervision_part,
this_deriv_weights,
first_frame,
frame_subsampling_factor);
nnet_chain_eg.outputs[0].Swap(&nnet_supervision);
}
nnet_chain_eg.inputs.resize(ivector_feats != NULL ? 2 : 1);
int32 tot_input_frames = chunk.left_context + chunk.num_frames +
chunk.right_context,
start_frame = chunk.first_frame - chunk.left_context;
GeneralMatrix input_frames;
ExtractRowRangeWithPadding(feats, start_frame, tot_input_frames,
&input_frames);
NnetIo input_io("input", -chunk.left_context, input_frames);
nnet_chain_eg.inputs[0].Swap(&input_io);
if (ivector_feats != NULL) {
// if applicable, add the iVector feature.
// choose iVector from a random frame in the chunk
int32 ivector_frame = RandInt(start_frame,
start_frame + num_input_frames - 1),
ivector_frame_subsampled = ivector_frame / ivector_period;
if (ivector_frame_subsampled < 0)
ivector_frame_subsampled = 0;
if (ivector_frame_subsampled >= ivector_feats->NumRows())
ivector_frame_subsampled = ivector_feats->NumRows() - 1;
Matrix<BaseFloat> ivector(1, ivector_feats->NumCols());
ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled));
NnetIo ivector_io("ivector", 0, ivector);
nnet_chain_eg.inputs[1].Swap(&ivector_io);
}
if (compress)
nnet_chain_eg.Compress();
std::ostringstream os;
os << utt_id << "-" << chunk.first_frame;
std::string key = os.str(); // key is <utt_id>-<frame_id>
example_writer->Write(key, nnet_chain_eg);
}
return true;
}
} // namespace nnet2
} // namespace kaldi
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet3;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Get frame-by-frame examples of data for nnet3+chain neural network\n"
"training. This involves breaking up utterances into pieces of a\n"
"fixed size. Input will come from chain-get-supervision.\n"
"Note: if <normalization-fst> is not supplied the egs will not be\n"
"ready for training; in that case they should later be processed\n"
"with nnet3-chain-normalize-egs\n"
"\n"
"Usage: nnet3-chain-get-egs [options] [<normalization-fst>] <features-rspecifier> "
"<chain-supervision-rspecifier> <egs-wspecifier>\n"
"\n"
"An example [where $feats expands to the actual features]:\n"
"chain-get-supervision [args] | \\\n"
" nnet3-chain-get-egs --left-context=25 --right-context=9 --num-frames=150,100,90 dir/normalization.fst \\\n"
" \"$feats\" ark,s,cs:- ark:cegs.1.ark\n"
"Note: the --frame-subsampling-factor option must be the same as given to\n"
"chain-get-supervision.\n";
bool compress = true;
int32 length_tolerance = 100, online_ivector_period = 1,
supervision_length_tolerance = 1;
ExampleGenerationConfig eg_config; // controls num-frames,
// left/right-context, etc.
BaseFloat normalization_fst_scale = 1.0;
int32 srand_seed = 0;
std::string online_ivector_rspecifier,
deriv_weights_rspecifier,
trans_mdl_rxfilename;
ParseOptions po(usage);
po.Register("compress", &compress, "If true, write egs with input features "
"in compressed format (recommended). Update: this is now "
"only relevant if the features being read are un-compressed; "
"if already compressed, we keep we same compressed format when "
"dumping-egs.");
po.Register("ivectors", &online_ivector_rspecifier, "Alias for "
"--online-ivectors option, for back compatibility");
po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of "
"ivector features, as a matrix.");
po.Register("online-ivector-period", &online_ivector_period, "Number of "
"frames between iVectors in matrices supplied to the "
"--online-ivectors option");
po.Register("srand", &srand_seed, "Seed for random number generator ");
po.Register("length-tolerance", &length_tolerance, "Tolerance for "
"difference in num-frames between feat and ivector matrices");
po.Register("supervision-length-tolerance", &supervision_length_tolerance,
"Tolerance for difference in num-frames-subsampled between "
"supervision and deriv weights, and also between supervision "
"and input frames.");
po.Register("deriv-weights-rspecifier", &deriv_weights_rspecifier,
"Per-frame weights that scales a frame's gradient during "
"backpropagation. "
"Not specifying this is equivalent to specifying a vector of "
"all 1s.");
po.Register("normalization-fst-scale", &normalization_fst_scale,
"Scale the weights from the "
"'normalization' FST before applying them to the examples. "
"(Useful for semi-supervised training)");
po.Register("transition-model", &trans_mdl_rxfilename,
"Filename of transition model to read; should only be supplied "
"if you want 'unconstrained' egs, and if you supplied "
"--convert-to-pdfs=false to chain-get-supervision.");
eg_config.Register(&po);
po.Read(argc, argv);
srand(srand_seed);
if (po.NumArgs() < 3 || po.NumArgs() > 4) {
po.PrintUsage();
exit(1);
}
std::string
normalization_fst_rxfilename,
feature_rspecifier,
supervision_rspecifier,
examples_wspecifier;
if (po.NumArgs() == 3) {
feature_rspecifier = po.GetArg(1);
supervision_rspecifier = po.GetArg(2);
examples_wspecifier = po.GetArg(3);
} else {
normalization_fst_rxfilename = po.GetArg(1);
KALDI_ASSERT(!normalization_fst_rxfilename.empty());
feature_rspecifier = po.GetArg(2);
supervision_rspecifier = po.GetArg(3);
examples_wspecifier = po.GetArg(4);
}
eg_config.ComputeDerived();
UtteranceSplitter utt_splitter(eg_config);
const TransitionModel *trans_mdl_ptr = NULL;
TransitionModel trans_mdl;
if (!trans_mdl_rxfilename.empty()) {
ReadKaldiObject(trans_mdl_rxfilename,
&trans_mdl);
trans_mdl_ptr = &trans_mdl;
}
fst::StdVectorFst normalization_fst;
if (!normalization_fst_rxfilename.empty()) {
ReadFstKaldi(normalization_fst_rxfilename, &normalization_fst);
KALDI_ASSERT(normalization_fst.NumStates() > 0);
if (normalization_fst_scale <= 0.0)
KALDI_ERR << "Invalid scale on normalization FST; must be > 0.0";
if (normalization_fst_scale != 1.0)
ApplyProbabilityScale(normalization_fst_scale, &normalization_fst);
}
// Read as GeneralMatrix so we don't need to un-compress and re-compress
// when selecting parts of matrices.
SequentialGeneralMatrixReader feat_reader(feature_rspecifier);
chain::RandomAccessSupervisionReader supervision_reader(
supervision_rspecifier);
NnetChainExampleWriter example_writer(examples_wspecifier);
RandomAccessBaseFloatMatrixReader online_ivector_reader(
online_ivector_rspecifier);
RandomAccessBaseFloatVectorReader deriv_weights_reader(
deriv_weights_rspecifier);
int32 num_err = 0;
for (; !feat_reader.Done(); feat_reader.Next()) {
std::string key = feat_reader.Key();
const GeneralMatrix &feats = feat_reader.Value();
if (!supervision_reader.HasKey(key)) {
KALDI_WARN << "No pdf-level posterior for key " << key;
num_err++;
} else {
const chain::Supervision &supervision = supervision_reader.Value(key);
const Matrix<BaseFloat> *online_ivector_feats = NULL;
if (!online_ivector_rspecifier.empty()) {
if (!online_ivector_reader.HasKey(key)) {
KALDI_WARN << "No iVectors for utterance " << key;
num_err++;
continue;
} else {
// this address will be valid until we call HasKey() or Value()
// again.
online_ivector_feats = &(online_ivector_reader.Value(key));
}
}
if (online_ivector_feats != NULL &&
(abs(feats.NumRows() - (online_ivector_feats->NumRows() *
online_ivector_period)) > length_tolerance
|| online_ivector_feats->NumRows() == 0)) {
KALDI_WARN << "Length difference between feats " << feats.NumRows()
<< " and iVectors " << online_ivector_feats->NumRows()
<< "exceeds tolerance " << length_tolerance;
num_err++;
continue;
}
const Vector<BaseFloat> *deriv_weights = NULL;
if (!deriv_weights_rspecifier.empty()) {
if (!deriv_weights_reader.HasKey(key)) {
KALDI_WARN << "No deriv weights for utterance " << key;
num_err++;
continue;
} else {
// this address will be valid until we call HasKey() or Value()
// again.
deriv_weights = &(deriv_weights_reader.Value(key));
}
}
if (!ProcessFile(trans_mdl_ptr, normalization_fst, feats,
online_ivector_feats, online_ivector_period,
supervision, deriv_weights, supervision_length_tolerance,
key, compress,
&utt_splitter, &example_writer))
num_err++;
}
}
if (num_err > 0)
KALDI_WARN << num_err << " utterances had errors and could "
"not be processed.";
// utt_splitter prints stats in its destructor.
return utt_splitter.ExitStatus();
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}