nnet3-chain-get-egs.cc 19.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
// chainbin/nnet3-chain-get-egs.cc

// Copyright      2015  Johns Hopkins University (author:  Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <sstream>

#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "hmm/posterior.h"
#include "nnet3/nnet-example.h"
#include "nnet3/nnet-chain-example.h"
#include "nnet3/nnet-example-utils.h"

namespace kaldi {
namespace nnet3 {


/**
   This function does all the processing for one utterance, and outputs the
   supervision objects to 'example_writer'.

     @param [in]  trans_mdl           The transition-model for the tree for which we
                                      are dumping egs.  This is expected to be
                                      NULL if the input examples already contain
                                      pdfs-ids+1 in their FSTs, and non-NULL if the
                                      input examples contain transition-ids in
                                      their FSTs and need to be converted to
                                      unconstrained 'e2e' (end-to-end) style FSTs
                                      which contain pdf-ids+1 but which won't enforce any
                                      alignment constraints interior to the
                                      utterance.
     @param [in]  normalization_fst   A version of denominator FST used to add weights
                                      to the created supervision. It is
                                      actually an FST expected to have the
                                      labels as (pdf-id+1).  If this has no states,
                                      we skip the final stage of egs preparation
                                      in which we compose with the normalization
                                      FST, and you should do it later with
                                      nnet3-chain-normalize-egs.
     @param [in]  feats               Input feature matrix
     @param [in]  ivector_feats       Online iVector matrix sub-sampled at a
                                      rate of "ivector_period".
                                      If NULL, iVector will not be added
                                      as in input to the egs.
     @param [in]  ivector_period      Number of frames between iVectors in
                                      "ivector_feats" matrix.
     @param [in]  supervision         Supervision for 'chain' training created
                                      from the binary chain-get-supervision.
                                      This is expected to be at a
                                      sub-sampled rate if
                                      --frame-subsampling-factor > 1.
     @param [in]  deriv_weights       Vector of per-frame weights that scale
                                      a frame's gradient during backpropagation.
                                      If NULL, this is equivalent to specifying
                                      a vector of all 1s.
                                      The dimension of the vector is expected
                                      to be the supervision size, which is
                                      at a sub-sampled rate if
                                      --frame-subsampling-factor > 1.
     @param [in]  supervision_length_tolerance
                                      Tolerance for difference in num-frames-subsampled between
                                      supervision and deriv weights, and also between supervision
                                      and input frames.
     @param [in]  utt_id              Utterance-id
     @param [in]  compress            If true, compresses the feature matrices.
     @param [out]  utt_splitter       Pointer to UtteranceSplitter object,
                                      which helps to split an utterance into
                                      chunks. This also stores some stats.
     @param [out]  example_writer     Pointer to egs writer.

**/

static bool ProcessFile(const TransitionModel *trans_mdl,
                        const fst::StdVectorFst &normalization_fst,
                        const GeneralMatrix &feats,
                        const MatrixBase<BaseFloat> *ivector_feats,
                        int32 ivector_period,
                        const chain::Supervision &supervision,
                        const VectorBase<BaseFloat> *deriv_weights,
                        int32 supervision_length_tolerance,
                        const std::string &utt_id,
                        bool compress,
                        UtteranceSplitter *utt_splitter,
                        NnetChainExampleWriter *example_writer) {
  KALDI_ASSERT(supervision.num_sequences == 1);
  int32 num_input_frames = feats.NumRows(),
      num_output_frames = supervision.frames_per_sequence;

  int32 frame_subsampling_factor = utt_splitter->Config().frame_subsampling_factor;

  if (deriv_weights && (std::abs(deriv_weights->Dim() - num_output_frames)
                        > supervision_length_tolerance)) {
    KALDI_WARN << "For utterance " << utt_id
               << ", mismatch between deriv-weights dim and num-output-frames"
               << "; " << deriv_weights->Dim() << " vs " << num_output_frames;
    return false;
  }

  if (!utt_splitter->LengthsMatch(utt_id, num_input_frames, num_output_frames,
                                  supervision_length_tolerance))
    return false;  // LengthsMatch() will have printed a warning.

  // It can happen if people mess with the feature frame-width options, that
  // there can be small mismatches in length between the supervisions (derived
  // from lattices) and the features; if this happens, and
  // supervision_length_tolerance is nonzero, and the num-input-frames is larger
  // than plausible for this num_output_frames, then it could lead us to try to
  // access frames in the supervision that don't exist.  The following
  // if-statement is to prevent that happening.
  if (num_input_frames > num_output_frames * frame_subsampling_factor)
    num_input_frames = num_output_frames * frame_subsampling_factor;

  std::vector<ChunkTimeInfo> chunks;

  utt_splitter->GetChunksForUtterance(num_input_frames, &chunks);

  if (chunks.empty()) {
    KALDI_WARN << "Not producing egs for utterance " << utt_id
               << " because it is too short: "
               << num_input_frames << " frames.";
    return false;
  }

  chain::SupervisionSplitter sup_splitter(supervision);

  for (size_t c = 0; c < chunks.size(); c++) {
    ChunkTimeInfo &chunk = chunks[c];

    int32 start_frame_subsampled = chunk.first_frame / frame_subsampling_factor,
        num_frames_subsampled = chunk.num_frames / frame_subsampling_factor;

    chain::Supervision supervision_part;
    sup_splitter.GetFrameRange(start_frame_subsampled,
                               num_frames_subsampled,
                               &supervision_part);

    if (trans_mdl != NULL)
      ConvertSupervisionToUnconstrained(*trans_mdl, &supervision_part);

    if (normalization_fst.NumStates() > 0 &&
        !AddWeightToSupervisionFst(normalization_fst,
                                   &supervision_part)) {
      KALDI_WARN << "For utterance " << utt_id << ", feature frames "
                 << chunk.first_frame << " to "
                 << (chunk.first_frame + chunk.num_frames)
                 << ", FST was empty after composing with normalization FST. "
                 << "This should be extremely rare (a few per corpus, at most)";
    }

    int32 first_frame = 0;  // we shift the time-indexes of all these parts so
                            // that the supervised part starts from frame 0.

    NnetChainExample nnet_chain_eg;
    nnet_chain_eg.outputs.resize(1);

    SubVector<BaseFloat> output_weights(
        &(chunk.output_weights[0]),
        static_cast<int32>(chunk.output_weights.size()));

    if (!deriv_weights) {
      NnetChainSupervision nnet_supervision("output", supervision_part,
                                            output_weights,
                                            first_frame,
                                            frame_subsampling_factor);
      nnet_chain_eg.outputs[0].Swap(&nnet_supervision);
    } else {
      Vector<BaseFloat> this_deriv_weights(num_frames_subsampled);
      for (int32 i = 0; i < num_frames_subsampled; i++) {
        int32 t = i + start_frame_subsampled;
        if (t < deriv_weights->Dim())
          this_deriv_weights(i) = (*deriv_weights)(t);
      }
      KALDI_ASSERT(output_weights.Dim() == num_frames_subsampled);
      this_deriv_weights.MulElements(output_weights);
      NnetChainSupervision nnet_supervision("output", supervision_part,
                                            this_deriv_weights,
                                            first_frame,
                                            frame_subsampling_factor);
      nnet_chain_eg.outputs[0].Swap(&nnet_supervision);
    }

    nnet_chain_eg.inputs.resize(ivector_feats != NULL ? 2 : 1);

    int32 tot_input_frames = chunk.left_context + chunk.num_frames +
        chunk.right_context,
        start_frame = chunk.first_frame - chunk.left_context;

    GeneralMatrix input_frames;
    ExtractRowRangeWithPadding(feats, start_frame, tot_input_frames,
                               &input_frames);

    NnetIo input_io("input", -chunk.left_context, input_frames);
    nnet_chain_eg.inputs[0].Swap(&input_io);

    if (ivector_feats != NULL) {
      // if applicable, add the iVector feature.
      // choose iVector from a random frame in the chunk
      int32 ivector_frame = RandInt(start_frame,
                                    start_frame + num_input_frames - 1),
          ivector_frame_subsampled = ivector_frame / ivector_period;
      if (ivector_frame_subsampled < 0)
        ivector_frame_subsampled = 0;
      if (ivector_frame_subsampled >= ivector_feats->NumRows())
        ivector_frame_subsampled = ivector_feats->NumRows() - 1;
      Matrix<BaseFloat> ivector(1, ivector_feats->NumCols());
      ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled));
      NnetIo ivector_io("ivector", 0, ivector);
      nnet_chain_eg.inputs[1].Swap(&ivector_io);
    }

    if (compress)
      nnet_chain_eg.Compress();

    std::ostringstream os;
    os << utt_id << "-" << chunk.first_frame;

    std::string key = os.str(); // key is <utt_id>-<frame_id>

    example_writer->Write(key, nnet_chain_eg);
  }
  return true;
}

} // namespace nnet2
} // namespace kaldi

int main(int argc, char *argv[]) {
  try {
    using namespace kaldi;
    using namespace kaldi::nnet3;
    typedef kaldi::int32 int32;
    typedef kaldi::int64 int64;

    const char *usage =
        "Get frame-by-frame examples of data for nnet3+chain neural network\n"
        "training.  This involves breaking up utterances into pieces of a\n"
        "fixed size.  Input will come from chain-get-supervision.\n"
        "Note: if <normalization-fst> is not supplied the egs will not be\n"
        "ready for training; in that case they should later be processed\n"
        "with nnet3-chain-normalize-egs\n"
        "\n"
        "Usage:  nnet3-chain-get-egs [options] [<normalization-fst>] <features-rspecifier> "
        "<chain-supervision-rspecifier> <egs-wspecifier>\n"
        "\n"
        "An example [where $feats expands to the actual features]:\n"
        "chain-get-supervision [args] | \\\n"
        "  nnet3-chain-get-egs --left-context=25 --right-context=9 --num-frames=150,100,90 dir/normalization.fst \\\n"
        "  \"$feats\" ark,s,cs:- ark:cegs.1.ark\n"
        "Note: the --frame-subsampling-factor option must be the same as given to\n"
        "chain-get-supervision.\n";

    bool compress = true;
    int32 length_tolerance = 100, online_ivector_period = 1,
          supervision_length_tolerance = 1;

    ExampleGenerationConfig eg_config;  // controls num-frames,
                                        // left/right-context, etc.

    BaseFloat normalization_fst_scale = 1.0;
    int32 srand_seed = 0;
    std::string online_ivector_rspecifier,
        deriv_weights_rspecifier,
        trans_mdl_rxfilename;

    ParseOptions po(usage);
    po.Register("compress", &compress, "If true, write egs with input features "
                "in compressed format (recommended).  Update: this is now "
                "only relevant if the features being read are un-compressed; "
                "if already compressed, we keep we same compressed format when "
                "dumping-egs.");
    po.Register("ivectors", &online_ivector_rspecifier, "Alias for "
                "--online-ivectors option, for back compatibility");
    po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of "
                "ivector features, as a matrix.");
    po.Register("online-ivector-period", &online_ivector_period, "Number of "
                "frames between iVectors in matrices supplied to the "
                "--online-ivectors option");
    po.Register("srand", &srand_seed, "Seed for random number generator ");
    po.Register("length-tolerance", &length_tolerance, "Tolerance for "
                "difference in num-frames between feat and ivector matrices");
    po.Register("supervision-length-tolerance", &supervision_length_tolerance,
                "Tolerance for difference in num-frames-subsampled between "
                "supervision and deriv weights, and also between supervision "
                "and input frames.");
    po.Register("deriv-weights-rspecifier", &deriv_weights_rspecifier,
                "Per-frame weights that scales a frame's gradient during "
                "backpropagation. "
                "Not specifying this is equivalent to specifying a vector of "
                "all 1s.");
    po.Register("normalization-fst-scale", &normalization_fst_scale,
                "Scale the weights from the "
                "'normalization' FST before applying them to the examples. "
                "(Useful for semi-supervised training)");
    po.Register("transition-model", &trans_mdl_rxfilename,
                "Filename of transition model to read; should only be supplied "
                "if you want 'unconstrained' egs, and if you supplied "
                "--convert-to-pdfs=false to chain-get-supervision.");

    eg_config.Register(&po);

    po.Read(argc, argv);

    srand(srand_seed);

    if (po.NumArgs() < 3 || po.NumArgs() > 4) {
      po.PrintUsage();
      exit(1);
    }

    std::string
        normalization_fst_rxfilename,
        feature_rspecifier,
        supervision_rspecifier,
        examples_wspecifier;

    if (po.NumArgs() == 3) {
      feature_rspecifier = po.GetArg(1);
      supervision_rspecifier = po.GetArg(2);
      examples_wspecifier = po.GetArg(3);
    } else {
      normalization_fst_rxfilename = po.GetArg(1);
      KALDI_ASSERT(!normalization_fst_rxfilename.empty());
      feature_rspecifier = po.GetArg(2);
      supervision_rspecifier = po.GetArg(3);
      examples_wspecifier = po.GetArg(4);
    }

    eg_config.ComputeDerived();
    UtteranceSplitter utt_splitter(eg_config);


    const TransitionModel *trans_mdl_ptr = NULL;
    TransitionModel trans_mdl;
    if (!trans_mdl_rxfilename.empty()) {
      ReadKaldiObject(trans_mdl_rxfilename,
                      &trans_mdl);
      trans_mdl_ptr = &trans_mdl;
    }


    fst::StdVectorFst normalization_fst;
    if (!normalization_fst_rxfilename.empty()) {
      ReadFstKaldi(normalization_fst_rxfilename, &normalization_fst);
      KALDI_ASSERT(normalization_fst.NumStates() > 0);

      if (normalization_fst_scale <= 0.0)
        KALDI_ERR << "Invalid scale on normalization FST; must be > 0.0";

      if (normalization_fst_scale != 1.0)
        ApplyProbabilityScale(normalization_fst_scale, &normalization_fst);
    }

    // Read as GeneralMatrix so we don't need to un-compress and re-compress
    // when selecting parts of matrices.
    SequentialGeneralMatrixReader feat_reader(feature_rspecifier);
    chain::RandomAccessSupervisionReader supervision_reader(
        supervision_rspecifier);
    NnetChainExampleWriter example_writer(examples_wspecifier);
    RandomAccessBaseFloatMatrixReader online_ivector_reader(
        online_ivector_rspecifier);
    RandomAccessBaseFloatVectorReader deriv_weights_reader(
        deriv_weights_rspecifier);

    int32 num_err = 0;

    for (; !feat_reader.Done(); feat_reader.Next()) {
      std::string key = feat_reader.Key();
      const GeneralMatrix &feats = feat_reader.Value();
      if (!supervision_reader.HasKey(key)) {
        KALDI_WARN << "No pdf-level posterior for key " << key;
        num_err++;
      } else {
        const chain::Supervision &supervision = supervision_reader.Value(key);
        const Matrix<BaseFloat> *online_ivector_feats = NULL;
        if (!online_ivector_rspecifier.empty()) {
          if (!online_ivector_reader.HasKey(key)) {
            KALDI_WARN << "No iVectors for utterance " << key;
            num_err++;
            continue;
          } else {
            // this address will be valid until we call HasKey() or Value()
            // again.
            online_ivector_feats = &(online_ivector_reader.Value(key));
          }
        }
        if (online_ivector_feats != NULL &&
            (abs(feats.NumRows() - (online_ivector_feats->NumRows() *
                                    online_ivector_period)) > length_tolerance
             || online_ivector_feats->NumRows() == 0)) {
          KALDI_WARN << "Length difference between feats " << feats.NumRows()
                     << " and iVectors " << online_ivector_feats->NumRows()
                     << "exceeds tolerance " << length_tolerance;
          num_err++;
          continue;
        }

        const Vector<BaseFloat> *deriv_weights = NULL;
        if (!deriv_weights_rspecifier.empty()) {
          if (!deriv_weights_reader.HasKey(key)) {
            KALDI_WARN << "No deriv weights for utterance " << key;
            num_err++;
            continue;
          } else {
            // this address will be valid until we call HasKey() or Value()
            // again.
            deriv_weights = &(deriv_weights_reader.Value(key));
          }
        }

        if (!ProcessFile(trans_mdl_ptr, normalization_fst, feats,
                         online_ivector_feats, online_ivector_period,
                         supervision, deriv_weights, supervision_length_tolerance,
                         key, compress,
                         &utt_splitter, &example_writer))
          num_err++;
      }
    }
    if (num_err > 0)
      KALDI_WARN << num_err << " utterances had errors and could "
          "not be processed.";
    // utt_splitter prints stats in its destructor.
    return utt_splitter.ExitStatus();
  } catch(const std::exception &e) {
    std::cerr << e.what() << '\n';
    return -1;
  }
}