batched-wav-nnet3-cuda.cc
12.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// cudadecoderbin/batched-wav-nnet3-cuda.cc
//
// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
// Hugo Braun, Justin Luitjens, Ryan Leary
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if HAVE_CUDA == 1
#include <cuda.h>
#include <cuda_profiler_api.h>
#include <nvToolsExt.h>
#include <sstream>
#include "cudadecoder/batched-threaded-nnet3-cuda-pipeline.h"
#include "cudamatrix/cu-allocator.h"
#include "fstext/fstext-lib.h"
#include "lat/lattice-functions.h"
#include "nnet3/am-nnet-simple.h"
#include "nnet3/nnet-utils.h"
#include "util/kaldi-thread.h"
using namespace kaldi;
using namespace cuda_decoder;
// When the pipeline is full, wait for
// KALDI_CUDA_DECODER_BIN_PIPELINE_FULL_SLEEP
// Not using a semaphore because it is usually not necessary to wait
#define KALDI_CUDA_DECODER_BIN_PIPELINE_FULL_SLEEP ((double)1 / 1e5)
void GetDiagnosticsAndPrintOutput(const std::string &utt,
const fst::SymbolTable *word_syms,
const CompactLattice &clat,
std::mutex *stdout_mutex,
int64 *tot_num_frames, double *tot_like) {
if (clat.NumStates() == 0) {
KALDI_WARN << "Empty lattice.";
return;
}
CompactLattice best_path_clat;
CompactLatticeShortestPath(clat, &best_path_clat);
Lattice best_path_lat;
ConvertLattice(best_path_clat, &best_path_lat);
double likelihood;
LatticeWeight weight;
int32 num_frames;
std::vector<int32> alignment;
std::vector<int32> words;
GetLinearSymbolSequence(best_path_lat, &alignment, &words, &weight);
num_frames = alignment.size();
likelihood = -(weight.Value1() + weight.Value2());
*tot_num_frames += num_frames;
*tot_like += likelihood;
{
std::lock_guard<std::mutex> lk(*stdout_mutex);
KALDI_VLOG(2) << "Likelihood per frame for utterance " << utt << " is "
<< (likelihood / num_frames) << " over " << num_frames
<< " frames.";
if (word_syms != NULL) {
std::ostringstream oss_warn;
oss_warn << utt << " ";
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms->Find(words[i]);
if (s == "")
oss_warn << "Word-id " << words[i] << " not in symbol table.";
oss_warn << s << " ";
}
KALDI_WARN << oss_warn.str();
}
}
}
// Called when a task is complete. Will be called by different threads
// concurrently,
// so it must be threadsafe
void FinishOneDecode(
const std::string &utt, const std::string &key,
const BatchedThreadedNnet3CudaPipelineConfig &batched_decoder_config,
const fst::SymbolTable *word_syms, const bool write_lattice,
BatchedThreadedNnet3CudaPipeline *cuda_pipeline, int64 *num_frames,
double *tot_like, CompactLatticeWriter *clat_writer,
std::mutex *clat_writer_mutex, std::mutex *stdout_mutex,
CompactLattice &clat) {
nvtxRangePushA("FinishOneDecode");
GetDiagnosticsAndPrintOutput(utt, word_syms, clat, stdout_mutex, num_frames,
tot_like);
if (write_lattice) {
std::lock_guard<std::mutex> lk(*clat_writer_mutex);
clat_writer->Write(utt, clat);
}
nvtxRangePop();
}
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace fst;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Reads in wav file(s) and simulates online decoding with neural nets\n"
"(nnet3 setup), with optional iVector-based speaker adaptation and\n"
"optional endpointing. Note: some configuration values and inputs "
"are\n"
"set via config files whose filenames are passed as options\n"
"\n"
"Usage: batched-wav-nnet3-cuda [options] <nnet3-in> <fst-in> "
"<wav-rspecifier> <lattice-wspecifier>\n";
std::string word_syms_rxfilename;
bool write_lattice = true;
int num_todo = -1;
int iterations = 1;
ParseOptions po(usage);
std::mutex stdout_mutex, clat_writer_mutex;
int pipeline_length = 4000; // length of pipeline of outstanding requests,
// this is independent of queue lengths in
// decoder
po.Register("write-lattice", &write_lattice,
"Output lattice to a file. Setting to false is useful when "
"benchmarking");
po.Register("word-symbol-table", &word_syms_rxfilename,
"Symbol table for words [for debug output]");
po.Register("file-limit", &num_todo,
"Limits the number of files that are processed by this driver. "
"After N files are processed the remaining files are ignored. "
"Useful for profiling");
po.Register("iterations", &iterations,
"Number of times to decode the corpus. Output will be written "
"only once.");
// Multi-threaded CPU and batched GPU decoder
BatchedThreadedNnet3CudaPipelineConfig batched_decoder_config;
CuDevice::RegisterDeviceOptions(&po);
RegisterCuAllocatorOptions(&po);
batched_decoder_config.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
return 1;
}
g_cuda_allocator.SetOptions(g_allocator_options);
CuDevice::Instantiate().SelectGpuId("yes");
CuDevice::Instantiate().AllowMultithreading();
BatchedThreadedNnet3CudaPipeline cuda_pipeline(batched_decoder_config);
std::string nnet3_rxfilename = po.GetArg(1), fst_rxfilename = po.GetArg(2),
wav_rspecifier = po.GetArg(3), clat_wspecifier = po.GetArg(4);
TransitionModel trans_model;
nnet3::AmNnetSimple am_nnet;
// read transition model and nnet
bool binary;
Input ki(nnet3_rxfilename, &binary);
trans_model.Read(ki.Stream(), binary);
am_nnet.Read(ki.Stream(), binary);
SetBatchnormTestMode(true, &(am_nnet.GetNnet()));
SetDropoutTestMode(true, &(am_nnet.GetNnet()));
nnet3::CollapseModel(nnet3::CollapseModelConfig(), &(am_nnet.GetNnet()));
CompactLatticeWriter clat_writer(clat_wspecifier);
fst::Fst<fst::StdArc> *decode_fst =
fst::ReadFstKaldiGeneric(fst_rxfilename);
cuda_pipeline.Initialize(*decode_fst, am_nnet, trans_model);
delete decode_fst;
fst::SymbolTable *word_syms = NULL;
if (word_syms_rxfilename != "")
if (!(word_syms = fst::SymbolTable::ReadText(word_syms_rxfilename)))
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_rxfilename;
int32 num_task_submitted = 0, num_err = 0;
double tot_like = 0.0;
int64 num_frames = 0;
double total_audio = 0;
nvtxRangePush("Global Timer");
// starting timer here so we
// can measure throughput
// without allocation
// overheads
// using kaldi timer, which starts counting in the constructor
Timer timer;
std::vector<double> iteration_timer;
for (int iter = 0; iter < iterations; iter++) {
std::string task_group = std::to_string(iter);
num_task_submitted = 0;
SequentialTableReader<WaveHolder> wav_reader(wav_rspecifier);
if (iter > 0)
write_lattice =
false; // write the lattices only on the first iteration
for (; !wav_reader.Done(); wav_reader.Next()) {
nvtxRangePushA("Utterance Iteration");
while (cuda_pipeline.GetNumberOfTasksPending() >= pipeline_length) {
kaldi::Sleep(KALDI_CUDA_DECODER_BIN_PIPELINE_FULL_SLEEP);
}
std::string utt = wav_reader.Key();
std::string key = utt;
if (iter > 0) {
// make key unique for subsequent iterations
key = key + "-" + std::to_string(iter);
}
const WaveData &wave_data = wav_reader.Value();
if (iter == 0) {
// calculating number of utterances per iteration
// calculating total audio time per iteration
total_audio += wave_data.Duration();
}
// Creating a function alias for the callback function of that utterance
auto finish_one_decode_lamba = [
// Capturing the arguments that will change by copy
utt, key, write_lattice,
// Capturing the const/global args by reference
&word_syms, &batched_decoder_config, &cuda_pipeline,
&clat_writer_mutex, &stdout_mutex, &clat_writer, &num_frames,
&tot_like]
// The callback function receive the compact lattice as argument
// if determinize_lattice is true, it is a determinized lattice
// otherwise, it is a raw lattice converted to compact format
// through ConvertLattice
(CompactLattice & clat_in) {
// Content of our callback function. Calling the general
// FinishOneDecode function with the proper arguments
FinishOneDecode(
// Captured arguments used to specialize FinishOneDecode for
// this task
utt, key, batched_decoder_config, word_syms, write_lattice,
&cuda_pipeline, &num_frames, &tot_like, &clat_writer,
&clat_writer_mutex, &stdout_mutex,
// Generated lattice that will be passed once the task is
// complete
clat_in);
};
// Adding a new task. Once the output lattice is ready, it will call
// finish_one_decode_lamba
// Important : finish_one_decode_lamba is called in the threadpool. We
// need it to be threadsafe
// (use locks around relevant parts, like writing to I/O)
cuda_pipeline.OpenDecodeHandle(key, wave_data, task_group,
finish_one_decode_lamba);
num_task_submitted++;
std::string group_done;
// Non-blocking way to check if a group is done
// returns false if zero groups are ready
if (cuda_pipeline.IsAnyGroupCompleted(&group_done)) {
cuda_pipeline.CloseAllDecodeHandlesForGroup(group_done);
double total_time = timer.Elapsed();
int32 iter = std::atoi(group_done.c_str());
KALDI_LOG << "~Group " << group_done << " completed"
<< " Aggregate Total Time: " << total_time
<< " Audio: " << total_audio * (iter + 1)
<< " RealTimeX: " << total_audio * (iter + 1) / total_time;
}
nvtxRangePop();
if (num_todo != -1 && num_task_submitted >= num_todo) break;
} // end utterance loop
} // end iterations loop
// We've submitted all tasks. Now waiting for them to complete
// We could also have called WaitForAllTasks and CloseAllDecodeHandles
while (cuda_pipeline.GetNumberOfTasksPending()) {
// WaitForAnyGroup is blocking. It will hold until one group is ready
std::string group_done = cuda_pipeline.WaitForAnyGroup();
cuda_pipeline.CloseAllDecodeHandlesForGroup(group_done);
double total_time = timer.Elapsed();
int32 iter = std::atoi(group_done.c_str());
KALDI_LOG << "~Group " << group_done << " completed"
<< " Aggregate Total Time: " << total_time
<< " Audio: " << total_audio * (iter + 1)
<< " RealTimeX: " << total_audio * (iter + 1) / total_time;
}
// number of seconds elapsed since the creation of timer
double total_time = timer.Elapsed();
nvtxRangePop();
KALDI_LOG << "Decoded " << num_task_submitted << " utterances, " << num_err
<< " with errors.";
KALDI_LOG << "Overall likelihood per frame was " << (tot_like / num_frames)
<< " per frame over " << num_frames << " frames.";
KALDI_LOG << "Overall: "
<< " Aggregate Total Time: " << total_time
<< " Total Audio: " << total_audio * iterations
<< " RealTimeX: " << total_audio * iterations / total_time;
delete word_syms; // will delete if non-NULL.
clat_writer.Close();
cuda_pipeline.Finalize();
cudaDeviceSynchronize();
return 0;
} catch (const std::exception &e) {
std::cerr << e.what();
return -1;
}
} // main()
#endif // if HAVE_CUDA == 1