feature-mfcc-cuda.cu
18.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// cudafeature/feature-mfcc-cuda.cu
//
// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
// Justin Luitjens
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if HAVE_CUDA == 1
#include <nvToolsExt.h>
#include <cub/cub.cuh>
#endif
#include "cudafeat/feature-mfcc-cuda.h"
#include "cudamatrix/cu-rand.h"
// Each thread block processes a unique frame
// threads in the same threadblock collaborate to
// compute the frame together.
__global__ void apply_lifter_and_floor_energy(
int num_frames, int num_cols, float cepstral_lifter, bool use_energy,
float energy_floor, float *log_energy, float *lifter_coeffs,
float *features, int32_t ldf) {
int thread_id = threadIdx.x;
int frame = blockIdx.x;
float *feats = features + frame * ldf;
// apply lifter coefficients
if (cepstral_lifter != 0.0f) {
for (int c = thread_id; c < num_cols; c += CU1DBLOCK) {
float lift = lifter_coeffs[c];
float f = feats[c];
feats[c] = f * lift;
}
}
// Thread 0 for each frame will apply energy
if (use_energy && thread_id == 0) {
float energy = log_energy[frame];
float log_energy_floor = log(energy_floor);
if (energy_floor > 0.0f && energy < log_energy_floor) {
energy = log_energy_floor;
}
feats[0] = energy;
}
}
// Each threadblock computes a different row of the matrix.
// Threads in the same block compute the row collaboratively.
// This kernel must be called out of place (A_in!=A_out).
__global__ void power_spectrum_kernel(int row_length, float *A_in, int32_t ldi,
float *A_out, int32_t ldo) {
int thread_id = threadIdx.x;
int block_id = blockIdx.x;
float *Ar = A_in + block_id * ldi;
float *Aw = A_out + block_id * ldo;
int half_length = row_length / 2;
for (int idx = thread_id; idx < half_length; idx += CU1DBLOCK) {
// ignore special case
if (idx == 0) continue;
float2 val = reinterpret_cast<float2 *>(Ar)[idx];
float ret = val.x * val.x + val.y * val.y;
Aw[idx] = ret;
}
// handle special case
if (threadIdx.x == 0) {
float real = Ar[0];
// cufft puts this at the end, this is different than kaldi does with its
// own
// internal implementation
float im = Ar[row_length];
Aw[0] = real * real;
Aw[half_length] = im * im;
}
}
// Expects to be called with 32x8 sized thread block.
__global__ void mel_banks_compute_kernel(int32_t num_frames, float energy_floor,
int32 *offsets, int32 *sizes,
float **vecs, const float *feats,
int32_t ldf, float *mels,
int32_t ldm) {
// Specialize WarpReduce for type float
typedef cub::WarpReduce<float> WarpReduce;
// Allocate WarpReduce shared memory for 8 warps
__shared__ typename WarpReduce::TempStorage temp_storage[8];
// warp will work together to compute sum
int tid = threadIdx.x;
int wid = threadIdx.y;
// blocks in the x dimension take different bins
int bin = blockIdx.x;
// frame is a combination of blocks in the y dimension and threads in the y
// dimension
int frame = blockIdx.y * blockDim.y + threadIdx.y;
if (frame >= num_frames) return;
int offset = offsets[bin];
int size = sizes[bin];
const float *v = vecs[bin];
const float *w = feats + frame * ldf + offset;
// perfom local sum
float sum = 0;
for (int idx = tid; idx < size; idx += 32) {
sum += v[idx] * w[idx];
}
// Sum in cub
sum = WarpReduce(temp_storage[wid]).Sum(sum);
if (tid == 0) {
// avoid log of zero
if (sum < energy_floor) sum = energy_floor;
float val = logf(sum);
mels[frame * ldm + bin] = val;
}
}
__global__ void process_window_kernel(
int frame_length, float dither, float energy_floor, bool remove_dc_offset,
float preemph_coeff, bool need_raw_log_energy, float *log_energy_pre_window,
const float *windowing, float *tmp_windows, int32_t ldt, float *windows,
int32_t ldw) {
// Specialize WarpReduce for type float
typedef cub::BlockReduce<float, CU1DBLOCK> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int thread_id = threadIdx.x;
int row = blockIdx.x;
float *tmp_window = tmp_windows + row * ldt;
float *window = windows + row * ldw;
__shared__ float ssum;
float sum = 0;
float wdot = 0;
for (int idx = thread_id; idx < frame_length; idx += CU1DBLOCK) {
// tmp_window contains optional dither. Apply that on read.
float wval = window[idx];
if (dither != 0.0f) {
wval += tmp_window[idx] * dither;
}
// compute local sum for removing dc offset
sum += wval;
// compute dot product for log energy
wdot += wval * wval;
float windowing_mul = 1;
if (remove_dc_offset == false && preemph_coeff == 0.0f) {
// we are done here so set windowing multiplication on write.
windowing_mul = windowing[idx];
}
// write dithered output
window[idx] = wval * windowing_mul;
}
__syncthreads();
if (remove_dc_offset) {
// we will recompute this below
wdot = 0.0f;
// use cub to reduce
sum = BlockReduce(temp_storage).Sum(sum);
// broadcast sum to entire block
if (thread_id == 0) ssum = sum;
__syncthreads();
sum = -ssum / frame_length;
for (int idx = thread_id; idx < frame_length; idx += CU1DBLOCK) {
float windowing_mul = 1;
float *out = window;
if (preemph_coeff == 0.0f) {
// we are done here so apply windowing
windowing_mul = windowing[idx];
} else {
// write to temp window as we will copy back into window
// when doing pre-emphasis
out = tmp_window;
}
// updated window value
float wval = window[idx] + sum;
// compute new dot product with dc offset removed
wdot += wval * wval;
// write output
out[idx] = wval * windowing_mul;
}
}
__syncthreads();
// if pointer is not NULL we will set energy to either
// the computed energy or 0 depending on need_raw_log_energy
if (log_energy_pre_window != NULL) {
float energy = 0.0f;
if (need_raw_log_energy) {
// must sync to use retemp_storage
if (remove_dc_offset) __syncthreads();
// use cub to reduce
wdot = BlockReduce(temp_storage).Sum(wdot);
energy = max(wdot, energy_floor);
}
if (thread_id == 0) {
log_energy_pre_window[row] = log(energy);
}
}
// TODO this could be more efficient using shared memory instead of
// tmp_window.
if (preemph_coeff != 0.0f) {
// wait for tmp_window to be computed
__threadfence();
__syncthreads();
// starting thread idx at 0 to keep writes aligned.
// unaligned reads are less painful then unaligned writes
for (int idx = thread_id; idx < frame_length; idx += CU1DBLOCK) {
float wval = tmp_window[idx];
float prev_window = wval;
if (idx > 0) {
prev_window = tmp_window[idx - 1];
}
// use __fmul_rn to match CPU
// window[idx] = (wval - preemph_coeff*prev_window) * windowing[idx];
window[idx] =
(wval - __fmul_rn(preemph_coeff, prev_window)) * windowing[idx];
}
}
}
__device__ inline int32 FirstSampleOfFrame(int32 frame, int32 frame_shift,
int32 window_size, bool snip_edges) {
if (snip_edges) {
return frame * frame_shift;
} else {
int32 midpoint_of_frame = frame_shift * frame + frame_shift / 2,
beginning_of_frame = midpoint_of_frame - window_size / 2;
return beginning_of_frame;
}
}
__global__ void extract_window_kernel(
int32 frame_shift, int32 frame_length, int32 frame_length_padded,
int32 window_size, bool snip_edges, int32_t sample_offset,
const BaseFloat __restrict__ *wave, int32 wave_dim,
BaseFloat *__restrict__ windows, int32_t wlda) {
int frame = blockIdx.x;
int tidx = threadIdx.x;
int32 start_sample =
FirstSampleOfFrame(frame, frame_shift, window_size, snip_edges);
// wave_start and wave_end are start and end indexes into 'wave', for the
// piece of wave that we're trying to extract.
int32 wave_start = int32(start_sample - sample_offset),
wave_end = wave_start + frame_length;
BaseFloat *window = windows + frame * wlda;
if (wave_start >= 0 && wave_end <= wave_dim) {
// the normal case-- no edge effects to consider.
for (int i = tidx; i < frame_length; i += blockDim.x) {
window[i] = wave[wave_start + i];
}
} else {
// Deal with any end effects by reflection, if needed. This code will only
// be reached for about two frames per utterance, so we don't concern
// ourselves excessively with efficiency.
for (int s = tidx; s < frame_length; s += blockDim.x) {
int32 s_in_wave = s + wave_start;
while (s_in_wave < 0 || s_in_wave >= wave_dim) {
// reflect around the beginning or end of the wave.
// e.g. -1 -> 0, -2 -> 1.
// dim -> dim - 1, dim + 1 -> dim - 2.
// the code supports repeated reflections, although this
// would only be needed in pathological cases.
if (s_in_wave < 0)
s_in_wave = -s_in_wave - 1;
else
s_in_wave = 2 * wave_dim - 1 - s_in_wave;
}
window[s] = wave[s_in_wave];
}
}
if (frame_length_padded > frame_length) {
for (int i = frame_length + tidx; i < frame_length_padded;
i += blockDim.x) {
window[i] = 0.0f;
}
}
}
// For each frame
// compute logf(dot(signal_frame, signal_frame))
__global__ void dot_log_kernel(int32_t num_frames, int32_t frame_length,
float *signal_frame, int32_t lds,
float *signal_log_energy) {
// Specialize WarpReduce for type float
typedef cub::BlockReduce<float, CU1DBLOCK> BlockReduce;
// Allocate WarpReduce shared memory for 8 warps
__shared__ typename BlockReduce::TempStorage temp_storage;
int32_t frame = blockIdx.x;
int32_t tid = threadIdx.x;
float *in = signal_frame + frame * lds;
float sum = 0;
// preform local dot product
for (int32_t i = tid; i < frame_length; i += blockDim.x) {
float val = in[i];
sum += val * val;
}
// reduce using cub
sum = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0) {
signal_log_energy[frame] = logf(sum);
}
}
namespace kaldi {
CudaMfcc::CudaMfcc(const MfccOptions &opts)
: MfccComputer(opts),
cu_lifter_coeffs_(lifter_coeffs_),
cu_dct_matrix_(dct_matrix_),
window_function_(opts.frame_opts) {
const MelBanks *mel_banks = GetMelBanks(1.0);
const std::vector<std::pair<int32, Vector<BaseFloat>>> &bins =
mel_banks->GetBins();
int size = bins.size();
bin_size_ = size;
std::vector<int32> offsets(size), sizes(size);
std::vector<float *> vecs(size);
cu_vecs_ = new CuVector<float>[size];
for (int i = 0; i < bins.size(); i++) {
cu_vecs_[i].Resize(bins[i].second.Dim(), kUndefined);
cu_vecs_[i].CopyFromVec(bins[i].second);
vecs[i] = cu_vecs_[i].Data();
sizes[i] = cu_vecs_[i].Dim();
offsets[i] = bins[i].first;
}
offsets_ = static_cast<int32 *>(
CuDevice::Instantiate().Malloc(size * sizeof(int32)));
sizes_ = static_cast<int32 *>(
CuDevice::Instantiate().Malloc(size * sizeof(int32)));
vecs_ = static_cast<float **>(
CuDevice::Instantiate().Malloc(size * sizeof(float *)));
CU_SAFE_CALL(cudaMemcpyAsync(vecs_, &vecs[0], size * sizeof(float *),
cudaMemcpyHostToDevice, cudaStreamPerThread));
CU_SAFE_CALL(cudaMemcpyAsync(offsets_, &offsets[0], size * sizeof(int32),
cudaMemcpyHostToDevice, cudaStreamPerThread));
CU_SAFE_CALL(cudaMemcpyAsync(sizes_, &sizes[0], size * sizeof(int32),
cudaMemcpyHostToDevice, cudaStreamPerThread));
CU_SAFE_CALL(cudaStreamSynchronize(cudaStreamPerThread));
frame_length_ = opts.frame_opts.WindowSize();
padded_length_ = opts.frame_opts.PaddedWindowSize();
fft_length_ = padded_length_ / 2; // + 1;
fft_size_ = 800;
// place holders to get strides for cufft. these will be resized correctly
// later. The +2 for cufft/fftw requirements of an extra element at the end.
// turning off stride because cufft seems buggy with a stride
cu_windows_.Resize(fft_size_, padded_length_, kUndefined,
kStrideEqualNumCols);
tmp_window_.Resize(fft_size_, padded_length_ + 2, kUndefined,
kStrideEqualNumCols);
stride_ = cu_windows_.Stride();
tmp_stride_ = tmp_window_.Stride();
cufftPlanMany(&plan_, 1, &padded_length_, NULL, 1, stride_, NULL, 1,
tmp_stride_ / 2, CUFFT_R2C, fft_size_);
cufftSetStream(plan_, cudaStreamPerThread);
}
// ExtractWindow extracts a windowed frame of waveform with a power-of-two,
// padded size. It does mean subtraction, pre-emphasis and dithering as
// requested.
void CudaMfcc::ExtractWindows(int32_t num_frames, int64 sample_offset,
const CuVectorBase<BaseFloat> &wave,
const FrameExtractionOptions &opts) {
KALDI_ASSERT(sample_offset >= 0 && wave.Dim() != 0);
int32 frame_length = opts.WindowSize(),
frame_length_padded = opts.PaddedWindowSize();
int64 num_samples = sample_offset + wave.Dim();
extract_window_kernel<<<num_frames, CU1DBLOCK>>>(
opts.WindowShift(), frame_length, frame_length_padded, opts.WindowSize(),
opts.snip_edges, sample_offset, wave.Data(), wave.Dim(),
cu_windows_.Data(), cu_windows_.Stride());
CU_SAFE_CALL(cudaGetLastError());
}
void CudaMfcc::ProcessWindows(int num_frames,
const FrameExtractionOptions &opts,
CuVectorBase<BaseFloat> *log_energy_pre_window) {
if (num_frames == 0) return;
int fft_num_frames = cu_windows_.NumRows();
KALDI_ASSERT(fft_num_frames % fft_size_ == 0);
process_window_kernel<<<num_frames, CU1DBLOCK>>>(
frame_length_, opts.dither, std::numeric_limits<float>::epsilon(),
opts.remove_dc_offset, opts.preemph_coeff, NeedRawLogEnergy(),
log_energy_pre_window->Data(), window_function_.cu_window.Data(),
tmp_window_.Data(), tmp_window_.Stride(), cu_windows_.Data(),
cu_windows_.Stride());
CU_SAFE_CALL(cudaGetLastError());
}
void CudaMfcc::ComputeFinalFeatures(int num_frames, BaseFloat vtln_wrap,
CuVector<BaseFloat> *cu_signal_log_energy,
CuMatrix<BaseFloat> *cu_features) {
Vector<float> tmp;
assert(opts_.htk_compat == false);
if (num_frames == 0) return;
if (opts_.use_energy && !opts_.raw_energy) {
dot_log_kernel<<<num_frames, CU1DBLOCK>>>(
num_frames, cu_windows_.NumCols(), cu_windows_.Data(),
cu_windows_.Stride(), cu_signal_log_energy->Data());
CU_SAFE_CALL(cudaGetLastError());
}
// make sure a reallocation hasn't changed these
KALDI_ASSERT(cu_windows_.Stride() == stride_);
KALDI_ASSERT(tmp_window_.Stride() == tmp_stride_);
// Perform FFTs in batches of fft_size. This reduces memory requirements
for (int idx = 0; idx < num_frames; idx += fft_size_) {
CUFFT_SAFE_CALL(cufftExecR2C(
plan_, cu_windows_.Data() + cu_windows_.Stride() * idx,
(cufftComplex *)(tmp_window_.Data() + tmp_window_.Stride() * idx)));
}
// Compute Power spectrum
CuMatrix<BaseFloat> power_spectrum(tmp_window_.NumRows(),
padded_length_ / 2 + 1, kUndefined);
power_spectrum_kernel<<<num_frames, CU1DBLOCK>>>(
padded_length_, tmp_window_.Data(), tmp_window_.Stride(),
power_spectrum.Data(), power_spectrum.Stride());
CU_SAFE_CALL(cudaGetLastError());
// mel banks
int num_bins = bin_size_;
cu_mel_energies_.Resize(num_frames, num_bins, kUndefined);
dim3 mel_threads(32, 8);
dim3 mel_blocks(num_bins, (num_frames + mel_threads.y - 1) / mel_threads.y);
mel_banks_compute_kernel<<<mel_blocks, mel_threads>>>(
num_frames, std::numeric_limits<float>::epsilon(), offsets_, sizes_,
vecs_, power_spectrum.Data(), power_spectrum.Stride(),
cu_mel_energies_.Data(), cu_mel_energies_.Stride());
CU_SAFE_CALL(cudaGetLastError());
// dct transform
cu_features->AddMatMat(1.0, cu_mel_energies_, kNoTrans, cu_dct_matrix_,
kTrans, 0.0);
apply_lifter_and_floor_energy<<<num_frames, CU1DBLOCK>>>(
cu_features->NumRows(), cu_features->NumCols(), opts_.cepstral_lifter,
opts_.use_energy, opts_.energy_floor, cu_signal_log_energy->Data(),
cu_lifter_coeffs_.Data(), cu_features->Data(), cu_features->Stride());
CU_SAFE_CALL(cudaGetLastError());
}
void CudaMfcc::ComputeFeatures(const CuVectorBase<BaseFloat> &cu_wave,
BaseFloat sample_freq, BaseFloat vtln_warp,
CuMatrix<BaseFloat> *cu_features) {
nvtxRangePushA("CudaMfcc::ComputeFeatures");
const FrameExtractionOptions &frame_opts = GetFrameOptions();
int num_frames = NumFrames(cu_wave.Dim(), frame_opts, true);
// compute fft frames by rounding up to a multiple of fft_size_
int fft_num_frames = num_frames + (fft_size_ - num_frames % fft_size_);
int feature_dim = Dim();
bool use_raw_log_energy = NeedRawLogEnergy();
CuVector<BaseFloat> raw_log_energies;
raw_log_energies.Resize(num_frames, kUndefined);
cu_windows_.Resize(fft_num_frames, padded_length_, kUndefined,
kStrideEqualNumCols);
cu_features->Resize(num_frames, feature_dim, kUndefined);
//+1 matches cufft/fftw requirements
tmp_window_.Resize(fft_num_frames, padded_length_ + 2, kUndefined,
kStrideEqualNumCols);
if (frame_opts.dither != 0.0f) {
// Calling cu-rand directly
// CuRand class works on CuMatrixBase which must
// assume that the matrix is part of a larger matrix
// Doing this directly avoids unecessary memory copies
CURAND_SAFE_CALL(
curandGenerateNormal(GetCurandHandle(), tmp_window_.Data(),
tmp_window_.NumRows() * tmp_window_.Stride(),
0.0 /*mean*/, 1.0 /*stddev*/));
}
// Extract Windows
ExtractWindows(num_frames, 0, cu_wave, frame_opts);
// Process Windows
ProcessWindows(num_frames, frame_opts, &raw_log_energies);
// Compute Features
ComputeFinalFeatures(num_frames, 1.0, &raw_log_energies, cu_features);
nvtxRangePop();
}
CudaMfcc::~CudaMfcc() {
delete[] cu_vecs_;
CuDevice::Instantiate().Free(vecs_);
CuDevice::Instantiate().Free(offsets_);
CuDevice::Instantiate().Free(sizes_);
cufftDestroy(plan_);
}
} // namespace kaldi