online-ivector-feature-cuda.cc
9.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// cudafeat/online-ivector-feature-cuda.cc
//
// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
// Justin Luitjens
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if HAVE_CUDA == 1
#include <nvToolsExt.h>
#endif
#include <iostream>
#include "base/io-funcs.h"
#include "base/kaldi-common.h"
#include "base/timer.h"
#include "cudafeat/feature-online-cmvn-cuda.h"
#include "cudafeat/online-ivector-feature-cuda-kernels.h"
#include "cudafeat/online-ivector-feature-cuda.h"
#include "cudamatrix/cu-device.h"
#include "cudamatrix/cu-sp-matrix.h"
#include "gmm/diag-gmm.h"
#include "util/kaldi-io.h"
#include "util/table-types.h"
namespace kaldi {
void IvectorExtractorFastCuda::GetIvector(const CuMatrixBase<BaseFloat> &feats,
CuVector<BaseFloat> *ivector) {
nvtxRangePushA("GetIvector");
CuMatrix<BaseFloat> posteriors, X;
CuVector<BaseFloat> gamma;
// normalized pipeline
CuMatrix<BaseFloat> lda_feats_normalized(feats.NumRows(), feats.NumCols(),
kUndefined);
{
CudaOnlineCmvn cmvn(info_.cmvn_opts, naive_cmvn_state_);
CuMatrix<BaseFloat> cmvn_feats(feats.NumRows(), feats.NumCols(),
kUndefined);
CuMatrix<BaseFloat> spliced_feats_normalized;
// Normalize
cmvn.ComputeFeatures(feats, &cmvn_feats);
// Splice
SpliceFeats(cmvn_feats, &spliced_feats_normalized);
// Transform by LDA matrix
lda_feats_normalized.AddMatMat(1.0, spliced_feats_normalized, kNoTrans,
cu_lda_, kTrans, 0.0);
}
// non-normalized pipeline
CuMatrix<BaseFloat> lda_feats(feats.NumRows(), feats.NumCols(), kUndefined);
{
CuMatrix<BaseFloat> spliced_feats;
// Splice feats
SpliceFeats(feats, &spliced_feats);
// Transform by LDA matrix
lda_feats.AddMatMat(1.0, spliced_feats, kNoTrans, cu_lda_, kTrans, 0.0);
}
// based on normalized feats
ComputePosteriors(lda_feats_normalized, &posteriors);
// based on non-normalized feats
ComputeIvectorStats(lda_feats, posteriors, &gamma, &X);
ComputeIvectorFromStats(gamma, X, ivector);
nvtxRangePop();
}
void IvectorExtractorFastCuda::Read(
const kaldi::OnlineIvectorExtractionConfig &config) {
// read ubm
DiagGmm gmm;
ReadKaldiObject(config.diag_ubm_rxfilename, &gmm);
ubm_gconsts_.Resize(gmm.NumGauss());
ubm_gconsts_.CopyFromVec(gmm.gconsts());
ubm_means_inv_vars_.Resize(gmm.NumGauss(), gmm.Dim());
ubm_means_inv_vars_.CopyFromMat(gmm.means_invvars());
ubm_inv_vars_.Resize(gmm.NumGauss(), gmm.Dim());
ubm_inv_vars_.CopyFromMat(gmm.inv_vars());
num_gauss_ = gmm.NumGauss();
// read extractor (copied from ivector/ivector-extractor.cc)
bool binary;
Input input(config.ivector_extractor_rxfilename, &binary);
Matrix<float> w;
Vector<float> w_vec;
std::vector<Matrix<float> > ie_M;
std::vector<SpMatrix<float> > ie_Sigma_inv;
ExpectToken(input.Stream(), binary, "<IvectorExtractor>");
ExpectToken(input.Stream(), binary, "<w>");
w.Read(input.Stream(), binary);
ExpectToken(input.Stream(), binary, "<w_vec>");
w_vec.Read(input.Stream(), binary);
ExpectToken(input.Stream(), binary, "<M>");
int32 size;
ReadBasicType(input.Stream(), binary, &size);
KALDI_ASSERT(size > 0);
ie_M.resize(size);
for (int32 i = 0; i < size; i++) {
ie_M[i].Read(input.Stream(), binary);
}
ExpectToken(input.Stream(), binary, "<SigmaInv>");
ie_Sigma_inv.resize(size);
for (int32 i = 0; i < size; i++) {
ie_Sigma_inv[i].Read(input.Stream(), binary);
}
ExpectToken(input.Stream(), binary, "<IvectorOffset>");
ReadBasicType(input.Stream(), binary, &prior_offset_);
ExpectToken(input.Stream(), binary, "</IvectorExtractor>");
// compute derived variables
ivector_dim_ = ie_M[0].NumCols();
feat_dim_ = ie_M[0].NumRows();
ie_Sigma_inv_M_f_.Resize(num_gauss_ * feat_dim_, ivector_dim_);
ie_U_.Resize(num_gauss_, ivector_dim_ * (ivector_dim_ + 1) / 2);
SpMatrix<float> tmp_sub_U(ivector_dim_);
Matrix<float> tmp_Sigma_inv_M(feat_dim_, ivector_dim_);
for (int32 i = 0; i < num_gauss_; i++) {
// compute matrix ie_Sigma_inv_M[i[
tmp_sub_U.AddMat2Sp(1, ie_M[i], kTrans, ie_Sigma_inv[i], 0);
SubVector<float> tmp_U_vec(tmp_sub_U.Data(),
ivector_dim_ * (ivector_dim_ + 1) / 2);
ie_U_.Row(i).CopyFromVec(tmp_U_vec);
tmp_Sigma_inv_M.AddSpMat(1, ie_Sigma_inv[i], ie_M[i], kNoTrans, 0);
// copy into global matrix
CuSubMatrix<float> window(ie_Sigma_inv_M_f_, i * feat_dim_, feat_dim_, 0,
ivector_dim_);
window.CopyFromMat(tmp_Sigma_inv_M);
}
}
void IvectorExtractorFastCuda::SpliceFeats(const CuMatrixBase<BaseFloat> &feats,
CuMatrix<BaseFloat> *spliced_feats) {
int left = -info_.splice_opts.left_context;
int right = info_.splice_opts.right_context;
int size = right - left + 1;
spliced_feats->Resize(feats.NumRows(), feats.NumCols() * size, kUndefined);
splice_features(feats.NumRows(), feats.NumCols(), left, size, feats.Data(),
feats.Stride(), spliced_feats->Data(),
spliced_feats->Stride());
}
void IvectorExtractorFastCuda::ComputePosteriors(
const CuMatrixBase<float> &feats, CuMatrix<float> *posteriors) {
int num_frames = feats.NumRows();
posteriors->Resize(num_frames, num_gauss_, kUndefined);
posteriors->CopyRowsFromVec(ubm_gconsts_);
CuMatrix<float> feats_sq(feats.NumRows(), feats.NumCols(), kUndefined);
// using our own kernel here to avoid an extra memcpy.
// ApplyPow unfortunately only works in place.
square_matrix(feats.NumRows(), feats.NumCols(), feats.Data(), feats.Stride(),
feats_sq.Data(), feats_sq.Stride());
posteriors->AddMatMat(1.0, feats, kNoTrans, ubm_means_inv_vars_, kTrans, 1.0);
posteriors->AddMatMat(-0.5, feats_sq, kNoTrans, ubm_inv_vars_, kTrans, 1.0);
// apply scaling factor
posteriors->ApplySoftMaxPerRow();
if (info_.max_count > 0) {
// when max count > 0 we need to know the total posterior sum to adjust
// the prior offset. So calculate that here.
get_matrix_sum_double_buffer(
b_, posteriors->NumRows(), posteriors->NumCols(), posteriors->Data(),
posteriors->Stride(), info_.posterior_scale, tot_post_.Data());
}
}
void IvectorExtractorFastCuda::ComputeIvectorStats(
const CuMatrixBase<float> &feats, const CuMatrixBase<float> &posteriors,
CuVector<float> *gamma, CuMatrix<float> *X) {
gamma->Resize(num_gauss_, kUndefined);
X->Resize(num_gauss_, feat_dim_, kUndefined);
gamma->AddRowSumMat(info_.posterior_scale, posteriors, 0.0f);
X->AddMatMat(info_.posterior_scale, posteriors, kTrans, feats, kNoTrans,
0.0f);
}
void IvectorExtractorFastCuda::ComputeIvectorFromStats(
const CuVector<float> &gamma, const CuMatrix<float> &X,
CuVector<float> *ivector) {
CuVector<float> &linear = *ivector;
linear.Resize(ivector_dim_, kUndefined);
// Initialize to zero as batched kernel is +=
linear.SetZero();
CuSpMatrix<float> quadratic(ivector_dim_, kUndefined);
batched_gemv_reduce(num_gauss_, feat_dim_, ivector_dim_,
ie_Sigma_inv_M_f_.Stride(), ie_Sigma_inv_M_f_.Data(),
X.Stride(), X.Data(), gamma.Data(), linear.Data());
CuSubVector<float> q_vec(quadratic.Data(),
ivector_dim_ * (ivector_dim_ + 1) / 2);
q_vec.AddMatVec(1.0f, ie_U_, kTrans, gamma, 0.0f);
// compute and apply prior offset to linear and quadraditic terms
// offset tot_post_ by correct buffer
update_linear_and_quadratic_terms(quadratic.NumRows(), prior_offset_,
tot_post_.Data() + b_, info_.max_count,
quadratic.Data(), linear.Data());
// advance double buffer
b_ = (b_ + 1) % 2;
// We are computing a solution to this linear system:
// x = quadratic^-1 * linear
// ivector+=x
// Inverting the matrix is unneccessary. We are only solving a single
// linear system. So just use choleskey's to solve for a single ivector
// Equation being solved: quadratic * ivector = linear
int nrhs = 1;
// Forming new non-SP matrix for cusolver.
CuMatrix<float> A(quadratic);
#if CUDA_VERSION >= 9010
// This is the cusolver return code. Checking it would require
// synchronization.
// So we do not check it.
int *d_info = NULL;
// query temp buffer size
int L_work;
CUSOLVER_SAFE_CALL(
cusolverDnSpotrf_bufferSize(GetCusolverDnHandle(), CUBLAS_FILL_MODE_LOWER,
ivector_dim_, A.Data(), A.Stride(), &L_work));
// allocate temp buffer
float *workspace =
static_cast<float *>(CuDevice::Instantiate().Malloc(L_work));
// perform factorization
CUSOLVER_SAFE_CALL(cusolverDnSpotrf(
GetCusolverDnHandle(), CUBLAS_FILL_MODE_LOWER, ivector_dim_, A.Data(),
A.Stride(), workspace, L_work, d_info));
// solve for rhs
CUSOLVER_SAFE_CALL(cusolverDnSpotrs(
GetCusolverDnHandle(), CUBLAS_FILL_MODE_LOWER, ivector_dim_, nrhs,
A.Data(), A.Stride(), ivector->Data(), ivector_dim_, d_info));
CuDevice::Instantiate().Free(workspace);
#else
KALDI_ERR << "Online Ivectors in CUDA is not supported by your CUDA version. "
<< "Upgrade to CUDA 9.1 or later";
#endif
// remove prior
CuSubVector<float> ivector0(*ivector, 0, 1);
ivector0.Add(-prior_offset_);
}
}; // namespace kaldi