cu-device.cc 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
// cudamatrix/cu-device.cc

// Copyright 2009-2012  Karel Vesely
//                2013  Lucas Ondel
//           2013-2015  Johns Hopkins University (author: Daniel Povey)
//                2015  Guoguo Chen

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.



#if HAVE_CUDA == 1
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_runtime_api.h>

#include <string>
#include <vector>
#include <algorithm>
#ifndef _MSC_VER
#include <dlfcn.h>
#endif

#include "cudamatrix/cu-common.h"
#include "cudamatrix/cu-device.h"
#include "cudamatrix/cu-matrix.h"
#include "base/kaldi-error.h"
#include "base/kaldi-utils.h"
#include "util/common-utils.h"
#include "util/kaldi-io.h"
// the following is for cuda_legacy_noop().
#include "cudamatrix/cu-kernels-ansi.h"

namespace kaldi {

/// This function attempts to get a CUDA device context on some available device
/// by doing 'cudaFree(0)'.  If it succeeds it returns true; if it fails, it
/// outputs some debugging information into 'debug_str' and returns false.
static bool GetCudaContext(int32 num_gpus, std::string *debug_str) {
  // Our first attempt to get a device context is: we do cudaFree(0) and see if
  // that returns no error code.  If it succeeds then we have a device
  // context.  Apparently this is the canonical way to get a context.
  if (cudaFree(0) == 0) {
    cudaGetLastError();  // Clear any error status.
    return true;
  }

  // The rest of this code represents how we used to get a device context, but
  // now its purpose is mainly a debugging one.
  std::ostringstream debug_stream;
  debug_stream << "num-gpus=" << num_gpus << ". ";
  for (int32 device = 0; device < num_gpus; device++) {
    cudaSetDevice(device);
    cudaError_t e = cudaFree(0);  // CUDA context gets created here.
    if (e == cudaSuccess) {
      if (debug_str)
        *debug_str = debug_stream.str();
      cudaGetLastError();  // Make sure the error state doesn't get returned in
                           // the next cudaGetLastError().
      return true;
    }
    debug_stream << "Device " << device << ": " << cudaGetErrorString(e) << ".  ";
  }
  if (debug_str)
    *debug_str = debug_stream.str();
  return false;
}


void CuDevice::Initialize() {
  // This function may be called in the following two situations:
  //
  // (1) in the main thread, only when a GPU is not currently being used, either
  // within a call like CuDevice()::Instantiate().SelectGpuId(..)
  // (where the Instantiate() call will call Initialize() before SelectGpuId()
  // is called, just because of how Instantiate() works), or in a call
  // to 'CuDevice::Instantiate().Enabled()'.  In this case it will just
  // set initialized_ to true and notice that device_id_ == 1, and do nothing.
  //
  // (2) in threads created by the user, as soon as someone calls something that
  //   might potentially use the GPU, via CuDevice()::Instantiate().
  //   If device_id_ is >= 0, this will create the cuBLAS and cuSparse handles.
  KALDI_ASSERT(!initialized_);
  initialized_ = true;
  if (device_id_ == -1) {
    // There is nothing to do; we are not using a GPU.
    return;
  } else {
    if (!multi_threaded_) {
      multi_threaded_ = true;
      KALDI_WARN << "For multi-threaded code that might use GPU, you should call "
          "CuDevice::Instantiate().AllowMultithreading() at the start of "
          "the program.";
    }
    device_id_copy_ = device_id_;
    cudaSetDevice(device_id_);
    // Initialize CUBLAS.
    CUBLAS_SAFE_CALL(cublasCreate(&cublas_handle_));
    CUBLAS_SAFE_CALL(cublasSetStream(cublas_handle_, cudaStreamPerThread));

#if CUDA_VERSION >= 9010
    CUSOLVER_SAFE_CALL(cusolverDnCreate(&cusolverdn_handle_));
    CUSOLVER_SAFE_CALL(cusolverDnSetStream(cusolverdn_handle_, 
            cudaStreamPerThread));
#endif
    
#if CUDA_VERSION >= 9000 
    if (device_options_.use_tensor_cores) {
      // Enable tensor cores in CUBLAS
      // Note if the device does not support tensor cores this will fall back to normal math mode
      CUBLAS_SAFE_CALL(cublasSetMathMode(cublas_handle_, 
            CUBLAS_TENSOR_OP_MATH));
    }
#endif

    // Initialize the cuSPARSE library
    CUSPARSE_SAFE_CALL(cusparseCreate(&cusparse_handle_));
    CUSPARSE_SAFE_CALL(cusparseSetStream(cusparse_handle_, cudaStreamPerThread));

    // Initialize the generator,
    CURAND_SAFE_CALL(curandCreateGenerator(
          &curand_handle_, CURAND_RNG_PSEUDO_DEFAULT));
    // To get same random sequence, call srand() before the constructor is invoked,
    CURAND_SAFE_CALL(curandSetGeneratorOrdering(
          curand_handle_, CURAND_ORDERING_PSEUDO_DEFAULT));
    CURAND_SAFE_CALL(curandSetStream(curand_handle_, cudaStreamPerThread));
    SeedGpu();
  }
}

void CuDevice::SelectGpuId(std::string use_gpu) {
  if (device_id_ != -1) {
    KALDI_ERR << "You cannot call SelectGpuId twice if, on the first time, "
        "you requested a GPU.";
  }
  if (use_gpu != "yes" && use_gpu != "no" && use_gpu != "optional" && use_gpu != "wait") {
    KALDI_ERR << "Please choose : --use-gpu=yes|no|optional|wait, passed '" << use_gpu << "'";
  }
  if (use_gpu == "no") {
    KALDI_LOG << "Manually selected to compute on CPU.";
    return;
  }
  // Check that we have a gpu available
  int32 num_gpus = 0;

  cudaError_t e = cudaGetDeviceCount(&num_gpus);

  // Make sure the global allocator object has the up-to-date options.
  g_cuda_allocator.SetOptions(g_allocator_options);

  if (num_gpus == 0) {
    if (use_gpu == "yes" || use_gpu == "wait") {
      KALDI_CUDA_ERR(e, "No CUDA GPU detected!");
    }
    if (use_gpu == "optional") {
      KALDI_WARN << "No CUDA GPU detected; running on CPU since --use-gpu=optional specified.";
      return;
    }
  }

  // Create a CUDA context.
  std::string debug_str;
  bool got_context = GetCudaContext(num_gpus, &debug_str);

  if (use_gpu != "wait") {
    if (!got_context) {
      // So far no we don't have context, sleep a bit and retry.
      int32 sec_sleep = (use_gpu == "yes" ? 20 : 2);
      KALDI_WARN << "Will try again to get a GPU after " << sec_sleep
                 << " seconds.";
      Sleep(sec_sleep);
      if (!GetCudaContext(num_gpus, &debug_str)) {
        if (use_gpu == "yes") {
          {
            Input input;
            input.Open("nvidia-smi 1>&2 |");
          }
          KALDI_LOG << debug_str;
          KALDI_ERR << "Failed to create CUDA context, no more unused GPUs? ";
        }
        if (use_gpu == "optional") {
          KALDI_WARN << "Running on CPU!!! No more unused CUDA GPUs?";
          return;
        }
      }
    }
  } else {
    int32 num_times = 0;
    BaseFloat wait_time = 0.0;
    while (!got_context) {
      int32 sec_sleep = 5;
      if (num_times == 0)
        KALDI_WARN << "Will try again indefinitely every " << sec_sleep
                   << " seconds to get a GPU.";
      num_times++;
      wait_time += sec_sleep;
      Sleep(sec_sleep);
      got_context = GetCudaContext(num_gpus, NULL);
    }

    KALDI_WARN << "Waited " << wait_time
               << " seconds before creating CUDA context";
  }

  // Double check that we have the context
  KALDI_ASSERT(cudaSuccess == cudaDeviceSynchronize());

  // Check if the machine use compute exclusive mode
  if (IsComputeExclusive()) {
    KALDI_LOG << "CUDA setup operating under Compute Exclusive Mode.";
    FinalizeActiveGpu();
    return;
  } else {
    // Suggest to use compute exclusive mode
    KALDI_WARN << "Not in compute-exclusive mode.  Suggestion: use "
        "'nvidia-smi -c 3' to set compute exclusive mode";
    // We want to choose the device more carefully, so release the CUDA context.
    e = cudaDeviceReset();
    if (e != cudaSuccess) {
      KALDI_CUDA_ERR(e, "Failed to release CUDA context on a GPU");
    }

    // And select the GPU according to proportion of free memory
    if (SelectGpuIdAuto()) {
      FinalizeActiveGpu();
      return;
    } else {
      // We could not get a GPU the second time, after prevously having the CUDA
      // context.  Strange but not impossible.
      if (use_gpu == "yes") {
        KALDI_ERR << "Error acquiring GPU.";
      }
      if (use_gpu == "optional") {
        KALDI_WARN << "Running on CPU!!! Error acquiring GPU.";
        return;
      }
    }
  }
}


void CuDevice::FinalizeActiveGpu() {
  // The device at this point should have an active GPU, so we can query its
  // name and memory stats and notify user which GPU is being used.

  // Get the device-id of the active device.
  {
    int device_id;
    cudaError_t e = cudaGetDevice(&device_id);
    if (e != cudaSuccess) {
      KALDI_CUDA_ERR(e, "Failed to get device-id of active device.");
    }
    device_id_ = device_id;
    device_id_copy_ = device_id;
    initialized_ = true;  // Prevent Initialize() from being called on this,
                          // the main thread.
    // Initialize CUBLAS.
    CUBLAS_SAFE_CALL(cublasCreate(&cublas_handle_));
    CUBLAS_SAFE_CALL(cublasSetStream(cublas_handle_, cudaStreamPerThread));
    
#if CUDA_VERSION >= 9010 
    CUSOLVER_SAFE_CALL(cusolverDnCreate(&cusolverdn_handle_));
    CUSOLVER_SAFE_CALL(cusolverDnSetStream(cusolverdn_handle_,
            cudaStreamPerThread));
#endif

#if CUDA_VERSION >= 9000 
    if (device_options_.use_tensor_cores) {
      // Enable tensor cores in CUBLAS
      // Note if the device does not support tensor cores this will fall back to normal math mode
      CUBLAS_SAFE_CALL(cublasSetMathMode(cublas_handle_, 
            CUBLAS_TENSOR_OP_MATH));
    }
#endif

    
    // Initialize the cuSPARSE library
    CUSPARSE_SAFE_CALL(cusparseCreate(&cusparse_handle_));
    CUSPARSE_SAFE_CALL(cusparseSetStream(cusparse_handle_, cudaStreamPerThread));
    
    // Initialize the generator,
    CURAND_SAFE_CALL(curandCreateGenerator(
          &curand_handle_, CURAND_RNG_PSEUDO_DEFAULT));
    // To get same random sequence, call srand() before the constructor is invoked,
    CURAND_SAFE_CALL(curandSetGeneratorOrdering(
          curand_handle_, CURAND_ORDERING_PSEUDO_DEFAULT));
    SeedGpu();

    // Notify the user which GPU is being userd.
    char name[128];
    DeviceGetName(name,128, device_id);

    CU_SAFE_CALL(cudaGetDeviceProperties(&properties_, device_id));

    KALDI_LOG << "The active GPU is [" << device_id << "]: " << name << "\t"
              << GetFreeGpuMemory(&free_memory_at_startup_, NULL) << " version "
              << properties_.major << "." << properties_.minor;
  }
  return;
}

bool CuDevice::DoublePrecisionSupported() {
  if (!Enabled()) return true;
  return properties_.major > 1 || (properties_.major == 1 && properties_.minor >= 3);
  // Double precision is supported from version 1.3
}


bool CuDevice::IsComputeExclusive() {
  // assume we already have an CUDA context created
  KALDI_ASSERT(cudaSuccess == cudaDeviceSynchronize());

  // get the device-id and its device-properties
  int gpu_id = -1;
  cudaError_t e = cudaGetDevice(&gpu_id);
  if (e != cudaSuccess) {
    KALDI_CUDA_ERR(e, "Failed to get current device");
  }
  struct cudaDeviceProp gpu_prop;
  e = cudaGetDeviceProperties(&gpu_prop, gpu_id);
  if (e != cudaSuccess) {
    KALDI_CUDA_ERR(e,  "Failed to get device properties");
  }
  // find out whether compute exclusive mode is used
  switch (gpu_prop.computeMode) {
    case cudaComputeModeExclusive :
      return true;
      break;
    case cudaComputeModeExclusiveProcess :
      return true;
      break;
    default :
      // in this case we release the GPU context...
      return false;
  }
}

template<typename TA, typename TB>
bool greater_pair(const std::pair<TA, TB> &left, const std::pair<TA, TB>& right) {
  return left.second > right.second;
}

bool CuDevice::SelectGpuIdAuto() {
  // Check that we have at least one gpu
  int32 num_gpus = 0;
  cudaError_t e = cudaGetDeviceCount(&num_gpus);
  if (num_gpus == 0) {
    KALDI_WARN << "No CUDA devices found";
    if (e != cudaSuccess) {
      KALDI_WARN << "cudaGetDeviceCount() returned " << e
                 <<", meaning: \"" << cudaGetErrorString(e)  << "\"";
    }
    return false;
  }

  // The GPU is selected according to maximal free memory ratio
  std::vector< std::pair<int, float> > free_mem_ratio(num_gpus);

  // Get ratios of memory use, if possible
  KALDI_LOG << "Selecting from " << num_gpus << " GPUs";
  for(int32 n = 0; n < num_gpus; n++) {
    int32 ret = cudaSetDevice(n);
    switch(ret) {
      case cudaSuccess : {
        // create the CUDA context for the thread
        cudaDeviceSynchronize();
        // get GPU name
        char name[128];
        DeviceGetName(name,128,n);
        // get GPU memory stats
        int64 free, total;
        std::string mem_stats;
        mem_stats = GetFreeGpuMemory(&free, &total);
        // log
        KALDI_LOG << "cudaSetDevice(" << n << "): "
                  << name << "\t" << mem_stats;

        // We have seen that in some cases GetFreeGpuMemory returns zero
        // That will produce nan after division, which might confuse
        // the sorting routine. Or maybe not, but let's keep it clean
        if (total <= 0) {
          KALDI_LOG << "Total memory reported for device " << n
                    << " is zero (or less).";
        }
        float mem_ratio = total > 0 ? free/(float)total : 0;
        free_mem_ratio[n] = std::make_pair(n, mem_ratio);

        // destroy the CUDA context for the thread
        cudaDeviceReset();
      } break;
      case cudaErrorDeviceAlreadyInUse :
        KALDI_LOG << "cudaSetDevice(" << n << "): "
                  << "Device cannot be accessed, used EXCLUSIVE-THREAD mode...";
        break;
      case cudaErrorInvalidDevice :
        KALDI_LOG << "cudaSetDevice(" << n << "): "
                  << "Device cannot be accessed, not a VALID CUDA device!";
        break;
      default :
        KALDI_LOG << "cudaSetDevice(" << n << "): "
                  << "returned " << ret << ", "
                  << cudaGetErrorString((cudaError_t)ret);
    }
  }
  // find GPU with max free memory
  int32 max_id=0;
  std::sort(free_mem_ratio.begin(), free_mem_ratio.end(),
            greater_pair<int, float>);
  // the free_mem_ratio should be bigger than zero
  KALDI_ASSERT(free_mem_ratio[max_id].second > 0.0);

  int dev_id;
  float mem_ratio;
  do {
    // try to select the GPU in the best to worst order
    // Note we have to check the return codes manually, as the CU_SAFE_CALL
    // contains call to KALDI_ERR (which will cause the program to abort)

    dev_id = free_mem_ratio[max_id].first;
    mem_ratio = free_mem_ratio[max_id].second;

    KALDI_LOG << "Trying to select device: " << dev_id << " (automatically), mem_ratio: " << mem_ratio;
    e = cudaSetDevice(dev_id);
    if (e != cudaSuccess) {
      KALDI_WARN << "Cannot select this device: return code " << e
                 << ", Error message: \"" << cudaGetErrorString(e) << "\"";
    } else {
      e = cudaDeviceSynchronize();
      if (e != cudaSuccess) {
        KALDI_WARN << "Cannot select this device: return code " << e
                   << ", Error message: \"" << cudaGetErrorString(e) << "\"";
      }
    }
    max_id++;
  } while ((e != cudaSuccess) && (max_id < free_mem_ratio.size()));

  if (e != cudaSuccess) {
    KALDI_WARN << "Failed to (automatically) select any device";
    return false;
  }
  KALDI_LOG << "Success selecting device " << dev_id << " free mem ratio: " << mem_ratio;
  return true;
}


void CuDevice::AccuProfile(const char *function_name,
                           const CuTimer &timer) {
  if (GetVerboseLevel() >= 1) {
    std::unique_lock<std::mutex> lock(profile_mutex_, std::defer_lock_t());
    if (multi_threaded_)
      lock.lock();
    std::string key(function_name);
    // by passing 0 as the stream to cudaStreamSynchronize, we are using the
    // per-thread default stream.  Since we compile with
    // -DCUDA_API_PER_THREAD_DEFAULT_STREAM, this equates to a per-thread
    // stream.
    CU_SAFE_CALL(cudaStreamSynchronize(0));
    double elapsed = timer.Elapsed();
    if (profile_map_.find(key) == profile_map_.end())
      profile_map_[key] = elapsed;
    else
      profile_map_[key] += elapsed;
  }
}

void CuDevice::PrintMemoryUsage() const {
  if (Enabled())
    g_cuda_allocator.PrintMemoryUsage();
}

void CuDevice::PrintProfile() {
  if (GetVerboseLevel() >= 1) {
    std::ostringstream os;
    os << "-----\n[cudevice profile]\n";
    unordered_map<std::string, double, StringHasher>::iterator it;
    std::vector<std::pair<double, std::string> > pairs;
    double total_time = 0.0;
    for(it = profile_map_.begin(); it != profile_map_.end(); ++it) {
      std::string function_name = it->first;
      double elapsed_time = it->second;
      total_time += elapsed_time;
      pairs.push_back(std::make_pair(elapsed_time, function_name));
    }
    // display from shortest to longest time, so tail will show the longest
    // times at the end.
    std::sort(pairs.begin(), pairs.end());
    size_t max_print = 15, start_pos = (pairs.size() <= max_print ?
                                        0 : pairs.size() - max_print);
    for (size_t i = start_pos; i < pairs.size(); i++)
      os << pairs[i].second << "\t" << pairs[i].first << "s\n";
    os << "Total GPU time:\t" << total_time << "s (may involve some double-counting)\n";
    os << "-----";
    KALDI_LOG << os.str();
    PrintMemoryUsage();
  }
}


void CuDevice::DeviceGetName(char* name, int32 len, int32 dev) {
  // prefill with something reasonable
  strncpy(name,"Unknown GPU",len);
#ifdef _MSC_VER
  cuDeviceGetName(name, len, dev);
#else
  // open libcuda.so
  void* libcuda = dlopen("libcuda.so",RTLD_LAZY);
  if (NULL == libcuda) {
    KALDI_WARN << "cannot open libcuda.so";
  } else {
    // define the function signature type
    typedef CUresult (*cu_fun_ptr)(char*,int,CUdevice);
    // get the symbol
    cu_fun_ptr cuDeviceGetName_ptr = (cu_fun_ptr)dlsym(libcuda,"cuDeviceGetName");
    if (NULL == cuDeviceGetName_ptr) {
      KALDI_WARN << "cannot load cuDeviceGetName from libcuda.so";
    } else {
      // call the function
      cuDeviceGetName_ptr(name, len, dev);
    }
    // close the library
    dlclose(libcuda);
  }
#endif
}


void CuDevice::CheckGpuHealth() {
  if (!Enabled()) return;
  CuTimer t;
  // prepare small matrices for a quick test
  Matrix<BaseFloat> a(50, 100);
  Matrix<BaseFloat> b(100 ,50);
  a.SetRandn();
  b.SetRandUniform();
  // multiply 2 small matrices in CPU:
  Matrix<BaseFloat> c(50, 50);
  c.AddMatMat(1.0, a, kNoTrans, b, kNoTrans, 0.0);
  // multiply same matrices in GPU:
  CuMatrix<BaseFloat> c1(50, 50);
  c1.AddMatMat(1.0, CuMatrix<BaseFloat>(a), kNoTrans, CuMatrix<BaseFloat>(b), kNoTrans, 0.0);
  // check that relative differnence is <1%
  AssertEqual(c, Matrix<BaseFloat>(c1), 0.01);
  // measure time spent in this check
  AccuProfile(__func__, t);
}

CuDevice::CuDevice():
    initialized_(false),
    device_id_copy_(-1),
    cublas_handle_(NULL),
    cusparse_handle_(NULL),
    cusolverdn_handle_(NULL) {
}

CuDevice::~CuDevice() {
  if (cublas_handle_)
    CUBLAS_SAFE_CALL(cublasDestroy(cublas_handle_));
  if (cusparse_handle_)
    CUSPARSE_SAFE_CALL(cusparseDestroy(cusparse_handle_));
  if (curand_handle_) {
    CURAND_SAFE_CALL(curandDestroyGenerator(curand_handle_));
  }
#if CUDA_VERSION >= 9010
  if (cusolverdn_handle_) {
    CUSOLVER_SAFE_CALL(cusolverDnDestroy(cusolverdn_handle_));
  }
#endif
}


// Each thread has its own copy of the CuDevice object.
// Note: this was declared "static".
thread_local CuDevice CuDevice::this_thread_device_;
  
CuDevice::CuDeviceOptions CuDevice::device_options_;

// define and initialize the static members of the CuDevice object.
int32 CuDevice::device_id_ = -1;
bool CuDevice::multi_threaded_ = false;
unordered_map<std::string, double, StringHasher> CuDevice::profile_map_;
std::mutex CuDevice::profile_mutex_;
int64 CuDevice::free_memory_at_startup_;
cudaDeviceProp CuDevice::properties_;
bool CuDevice::debug_stride_mode_ = false;


void SynchronizeGpu() {
  cuda_legacy_noop();
  CU_SAFE_CALL(cudaGetLastError());
}

}  // namespace kaldi

#else  // #if HAVE_CUDA == 1

namespace kaldi {
// SynchronizeGpu() does nothing if we didn't compile for GPU.
void SynchronizeGpu() { }
}

#endif  // #if HAVE_CUDA == 1