pitch-functions-test.cc 23 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
// feat/pitch-functions-test.cc

// Copyright    2013  Pegah Ghahremani
//              2014  IMSL, PKU-HKUST (author: Wei Shi)
//              2014  Yanqing Sun, Junjie Wang,
//                    Daniel Povey, Korbinian Riedhammer
//                    Xin Lei

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.


#include <iostream>

#include "base/kaldi-math.h"
#include "feat/feature-plp.h"
#include "feat/pitch-functions.h"
#include "feat/wave-reader.h"
#include "sys/stat.h"
#include "sys/types.h"
#include "base/timer.h"


namespace kaldi {

std::string ConvertIntToString(const int &number) {
  std::stringstream ss;  // create a stringstream
  ss << number;  // add number to the stream
  return ss.str();  // return a string with the contents of the stream
}
bool DirExist(const std::string &dirname) {
  struct stat st;
  if (stat(dirname.c_str(), &st) != 0) {
    KALDI_LOG << " directory " << dirname << " does not exist!";
    return false;
  }
  return true;
}

static void UnitTestSimple() {
  KALDI_LOG << "=== UnitTestSimple() ===";
  Vector<BaseFloat> v(1000);
  Matrix<BaseFloat> m1, m2;
  // init with noise
  for (int32 i = 0; i < v.Dim(); i++) {
    v(i) = (abs(i * 433024253) % 65535) - (65535 / 2);
  }
  KALDI_LOG << "<<<=== Just make sure it runs... Nothing is compared";
  // trying to compute and process pitch with same opts as baseline.
  PitchExtractionOptions op1;
  ProcessPitchOptions op2;
  ComputeAndProcessKaldiPitch(op1, op2, v, &m1);
  KALDI_LOG << "Test passed :)";
}

// Make sure the snip edges options works as expected, i.e.
// disabling the option should introduce a delay equivalent to
// half the window length
static void UnitTestSnipEdges() {
  KALDI_LOG << "=== UnitTestSnipEdges() ===\n";
  PitchExtractionOptions op_SnipEdges, op_NoSnipEdges;
  Matrix<BaseFloat> m1, m2;
  ProcessPitchOptions opp;
  int nbad = 0;

  // Load test wave file
  WaveData wave;
  {
    std::ifstream is("test_data/test.wav");
    wave.Read(is);
  }
  KALDI_ASSERT(wave.Data().NumRows() == 1);
  SubVector<BaseFloat> waveform(wave.Data(), 0);

  // Process files with snip edge enabled or disabled, on various
  // frame shifts and frame lengths
  for (int fs = 4; fs <= 10; fs += 2) {
    for (int wl = 20; wl <= 100; wl += 20) {
      // Rather dirty way to round, but works fine
      int32 ms_fs = (int32)(wave.SampFreq() * 0.001 * fs + 0.5);
      int32 ms_wl = (int32)(wave.SampFreq() * 0.001 * wl + 0.5);
      op_SnipEdges.snip_edges = true;
      op_SnipEdges.frame_shift_ms = fs;
      op_SnipEdges.frame_length_ms = wl;
      op_NoSnipEdges.snip_edges = false;
      op_NoSnipEdges.frame_shift_ms = fs;
      op_NoSnipEdges.frame_length_ms = wl;
      ComputeAndProcessKaldiPitch(op_SnipEdges, opp, waveform, &m1);
      ComputeAndProcessKaldiPitch(op_NoSnipEdges, opp, waveform, &m2);

      // Check the output differ in a predictable manner:
      // 1. The length of the output should only depend on the window size & window shift
      KALDI_LOG << "Output: " << m1.NumRows() << " ; " << m2.NumRows();
      //   - with snip edges disabled, depends on file size and frame shift only */
      AssertEqual(m2.NumRows(), ((int)(wave.Data().NumCols() + ms_fs / 2)) / ms_fs);
      //   - with snip edges disabled, depend on file size, frame shift, frame length */
      AssertEqual(m1.NumRows(), ((int)(wave.Data().NumCols() - ms_wl + ms_fs)) / ms_fs);
      // 2. The signal should be delayed in a predictable manner
      Vector<BaseFloat> f0_1(m1.NumRows());
      f0_1.CopyColFromMat(m1, 1);
      Vector<BaseFloat> f0_2(m2.NumRows());
      f0_2.CopyColFromMat(m2, 1);

      BaseFloat bcorr = -1;
      int32 blag = -1;
      int32 max_lag =  wl / fs * 2;
      int num_frames_f0 = m1.NumRows() - max_lag;

      /* Looks for the best correlation between the output signals,
         identify the lag, compares it with theoretical value */
      SubVector<BaseFloat> sub_vec1(f0_1, 0, num_frames_f0);
      for (int32 lag = 0; lag < max_lag + 1; lag++) {
        SubVector<BaseFloat> sub_vec2(f0_2, lag, num_frames_f0);
        BaseFloat corr = VecVec(sub_vec1, sub_vec2);
        if (corr > bcorr) {
          bcorr = corr;
          blag = lag;
        }
      }
      KALDI_LOG << "Best lag: " << blag * fs << "ms with value: " << bcorr <<
        "; expected lag: " << wl / 2 + 10 - fs / 2 << " ± " << fs;
      // BP: the lag should in theory be equal to wl / 2 - fs / 2, but it seems
      // to be: wl / 2 + 10 - fs / 2! It appears the 10 ms comes from the nccf_lag which
      // is 82 samples with the default settings => nccf_lag / resample_freq / 2 => 10.25ms
      // We should really be using the full_frame_length of the algorithm for accurate results,
      // but there is no method to obtain it (and it is potentially variable), so that makes
      // the pitch value *with snip edge* particularly unreliable.
      if (!ApproxEqual(blag * fs, (BaseFloat)(wl / 2 + 10 - fs / 2), (BaseFloat)fs / wl)) {
        KALDI_WARN << "Bad lag for window size " << wl << " and frame shift " << fs;
        nbad++;
      }
      /*AssertEqual(blag * fs, (BaseFloat)(wl / 2 + 10 - fs / 2), (BaseFloat)fs / wl);*/
    }
  }
  /* If more than 10% of tests fail, crash */
  if (nbad > 9) KALDI_ERR << "Too many bad lags: " << nbad;

}

// Make sure that doing a calculation on the whole waveform gives
// the same results as doing on the waveform broken into pieces.
static void UnitTestPieces() {
  KALDI_LOG << "=== UnitTestPieces() ===\n";
  for (int32 n = 0; n < 10; n++) {
    // the parametrization object
    PitchExtractionOptions op1;
    ProcessPitchOptions op2;
    op2.delta_pitch_noise_stddev = 0.0;  // to avoid mismatch of delta_log_pitch
                                         // brought by rand noise.
    op1.nccf_ballast_online = true;  // this is necessary for the computation
    // to be identical regardless how many pieces we break the signal into.

    int32 size = 10000 + rand() % 50000;

    Vector<BaseFloat> v(size);
    // init with noise plus a sine-wave whose frequency is changing randomly.

    double cur_freq = 200.0, normalized_time = 0.0;

    for (int32 i = 0; i < size; i++) {
      v(i) = RandGauss() + cos(normalized_time * M_2PI);
      cur_freq += RandGauss();  // let the frequency wander a little.
      if (cur_freq < 100.0) cur_freq = 100.0;
      if (cur_freq > 300.0) cur_freq = 300.0;
      normalized_time += cur_freq / op1.samp_freq;
    }

    Matrix<BaseFloat> m1, m1p;

    // trying to have same opts as baseline.
    ComputeKaldiPitch(op1, v, &m1);
    ProcessPitch(op2, m1, &m1p);

    Matrix<BaseFloat> m2, m2p;

    { // compute it online with multiple pieces.
      OnlinePitchFeature pitch_extractor(op1);
      OnlineProcessPitch process_pitch(op2, &pitch_extractor);
      int32 start_samp = 0;
      while (start_samp < v.Dim()) {
        int32 num_samp = rand() % (v.Dim() + 1 - start_samp);
        SubVector<BaseFloat> v_part(v, start_samp, num_samp);
        pitch_extractor.AcceptWaveform(op1.samp_freq, v_part);
        start_samp += num_samp;
      }
      pitch_extractor.InputFinished();
      int32 num_frames = pitch_extractor.NumFramesReady();
      m2.Resize(num_frames, 2);
      m2p.Resize(num_frames, process_pitch.Dim());
      for (int32 frame = 0; frame < num_frames; frame++) {
        SubVector<BaseFloat> row(m2, frame);
        pitch_extractor.GetFrame(frame, &row);
        SubVector<BaseFloat> rowp(m2p, frame);
        process_pitch.GetFrame(frame, &rowp);
      }
    }
    AssertEqual(m1, m2);
    if (!ApproxEqual(m1p, m2p)) {
      KALDI_ERR << "Post-processed pitch differs: " << m1p << " vs. " << m2p;
    }
    KALDI_LOG << "Test passed :)\n";
  }
}

// Make sure that the delayed output matches the non-delayed
// version in the online scenario.
static void UnitTestDelay() {
  KALDI_LOG << "=== UnitTestDelay() ===\n";
  for (int32 n = 0; n < 10; n++) {
    // the parametrization object
    PitchExtractionOptions ext_opt;
    ProcessPitchOptions pro_opt1, pro_opt2;
    pro_opt1.delta_pitch_noise_stddev = 0.0;  // to avoid mismatch of delta_log_pitch
                                              // brought by rand noise.
    pro_opt2.delta_pitch_noise_stddev = 0.0;  // to avoid mismatch of delta_log_pitch
                                              // brought by rand noise.
    pro_opt2.delay = rand() % 50;
    ext_opt.nccf_ballast_online = true;  // this is necessary for the computation
    // to be identical regardless how many pieces we break the signal into.

    int32 size = 1000 + rand() % 5000;

    Vector<BaseFloat> v(size);
    // init with noise plus a sine-wave whose frequency is changing randomly.

    double cur_freq = 200.0, normalized_time = 0.0;

    for (int32 i = 0; i < size; i++) {
      v(i) = RandGauss() + cos(normalized_time * M_2PI);
      cur_freq += RandGauss();  // let the frequency wander a little.
      if (cur_freq < 100.0) cur_freq = 100.0;
      if (cur_freq > 300.0) cur_freq = 300.0;
      normalized_time += cur_freq / ext_opt.samp_freq;
    }

    Matrix<BaseFloat> m1, m2;
    // compute it online with multiple pieces.
    OnlinePitchFeature pitch_extractor(ext_opt);
    OnlineProcessPitch pitch_processor(pro_opt1, &pitch_extractor);
    OnlineProcessPitch pitch_processor_delayed(pro_opt2, &pitch_extractor);
    int32 start_samp = 0;
    while (start_samp < v.Dim()) {
      int32 num_samp = rand() % (v.Dim() + 1 - start_samp);
      SubVector<BaseFloat> v_part(v, start_samp, num_samp);
      pitch_extractor.AcceptWaveform(ext_opt.samp_freq, v_part);
      start_samp += num_samp;
    }
    pitch_extractor.InputFinished();

    int32 num_frames = pitch_processor.NumFramesReady();
    m1.Resize(num_frames, pitch_processor.Dim());
    for (int32 frame = 0; frame < num_frames; frame++) {
      SubVector<BaseFloat> rowp(m1, frame);
      pitch_processor.GetFrame(frame, &rowp);
    }

    int32 num_frames_delayed = pitch_processor_delayed.NumFramesReady();
    m2.Resize(num_frames_delayed, pitch_processor_delayed.Dim());
    for (int32 frame = 0; frame < num_frames_delayed; frame++) {
      SubVector<BaseFloat> rowp(m2, frame);
      pitch_processor_delayed.GetFrame(frame, &rowp);
    }

    KALDI_ASSERT(num_frames_delayed == num_frames + pro_opt2.delay);
    SubMatrix<BaseFloat> m3(m2, pro_opt2.delay, num_frames, 0, m2.NumCols());
    if (!ApproxEqual(m1, m3)) {
      KALDI_ERR << "Post-processed pitch differs: " << m1 << " vs. " << m3;
    }
    KALDI_LOG << "Test passed :)\n";
  }
}

extern bool pitch_use_naive_search; // was declared in pitch-functions.cc

// Make sure that doing a calculation on the whole waveform gives
// the same results as doing on the waveform broken into pieces.
static void UnitTestSearch() {
  KALDI_LOG << "=== UnitTestSearch() ===\n";
  for (int32 n = 0; n < 3; n++) {
    // the parametrization object
    PitchExtractionOptions op;
    op.nccf_ballast_online = true;  // this is necessary for the computation
    // to be identical regardless how many pieces we break the signal into.

    int32 size = 1000 + rand() % 1000;

    Vector<BaseFloat> v(size);
    // init with noise plus a sine-wave whose frequency is changing randomly.

    double cur_freq = 200.0, normalized_time = 0.0;

    for (int32 i = 0; i < size; i++) {
      v(i) = RandGauss() + cos(normalized_time * M_2PI);
      cur_freq += RandGauss();  // let the frequency wander a little.
      if (cur_freq < 100.0) cur_freq = 100.0;
      if (cur_freq > 300.0) cur_freq = 300.0;
      normalized_time += cur_freq / op.samp_freq;
    }

    Matrix<BaseFloat> m1;
    ComputeKaldiPitch(op, v, &m1);

    pitch_use_naive_search = true;

    Matrix<BaseFloat> m2;
    ComputeKaldiPitch(op, v, &m2);

    pitch_use_naive_search = false;

    AssertEqual(m1, m2, 1.0e-08);  // should be identical.
  }
  KALDI_LOG << "Test passed :)\n";
}

static void UnitTestComputeGPE() {
  KALDI_LOG << "=== UnitTestComputeGPE ===\n";
  int32 wrong_pitch = 0, tot_voiced = 0, tot_unvoiced = 0, num_frames = 0;
  BaseFloat tol = 0.1, avg_d_kpitch = 0, real_pitch = 0;
  for (int32 i = 1; i < 11; i++) {
    std::string wavefile;
    std::string num;
    if (i < 6) {
      num = "f" + ConvertIntToString(i) + "nw0000";
    } else {
      num = "m" + ConvertIntToString(i-5) + "nw0000";
    }
    Matrix<BaseFloat> gross_pitch;
    std::string pitchfile = "keele/keele-true-lags/"+num+".txt";
    std::ifstream pitch(pitchfile.c_str());
    gross_pitch.Read(pitch, false);
    Matrix<BaseFloat> kaldi_pitch;
    std::string kfile = "keele/tmp/+"+num+"-kaldi.txt";
    std::ifstream kpitch(kfile.c_str());
    kaldi_pitch.Read(kpitch, false);
    num_frames = std::min(kaldi_pitch.NumRows(),gross_pitch.NumRows());
    for (int32 j = 1; j < num_frames; j++) {
      if (gross_pitch(j,0) > 0.0) {
        tot_voiced++;
        real_pitch = 20000.0/gross_pitch(j,0);
        if (fabs((real_pitch - kaldi_pitch(j,1))/real_pitch) > tol)
          wrong_pitch++;
      } else if (gross_pitch(j,0) == 0.0 && gross_pitch(j-1,0) == 0.0) {
        tot_unvoiced++;
        avg_d_kpitch += fabs(kaldi_pitch(j,1) - kaldi_pitch(j-1,1));
      }
    }
  }
  BaseFloat GPE = 1.0 * wrong_pitch / tot_voiced;
  KALDI_LOG << " Gross Pitch Error with Rel.Error " << tol << " is " << GPE;
  KALDI_LOG << "Average Kaldi delta_pitch for unvoiced regions " << avg_d_kpitch/tot_unvoiced;
}

// Compare pitch using Kaldi pitch tracker on KEELE corpora
static void UnitTestKeele() {
  KALDI_LOG << "=== UnitTestKeele() ===";
  for (int32 i = 1; i < 11; i++) {
    std::string wavefile;
    std::string num;
    if (i < 6) {
      num = "f" + ConvertIntToString(i) + "nw0000";
      wavefile = "keele/16kHz/"+num+".wav";
    } else {
      num = "m" + ConvertIntToString(i-5) + "nw0000";
      wavefile = "keele/16kHz/"+num+".wav";
    }
    KALDI_LOG << "--- " << wavefile << " ---";
    std::ifstream is(wavefile.c_str(), std::ios_base::binary);
    WaveData wave;
    wave.Read(is);
    KALDI_ASSERT(wave.Data().NumRows() == 1);
    SubVector<BaseFloat> waveform(wave.Data(), 0);
    // use pitch code with default configuration..
    PitchExtractionOptions op;
    op.nccf_ballast = 1;
    op.penalty_factor = 5;
    // compute pitch.
    Matrix<BaseFloat> m;
    ComputeKaldiPitch(op, waveform, &m);
    std::string outfile = "keele/tmp/+"+num+"-kaldi.txt";
    std::ofstream os(outfile.c_str());
    m.Write(os, false);
  }
}
/* change freq_weight to investigate the results */
static void UnitTestPenaltyFactor() {
  KALDI_LOG << "=== UnitTestPenaltyFactor() ===";
  for (int32 k = 1; k < 5; k++) {
    for (int32 i = 1; i < 4; i++) {
      std::string wavefile;
      std::string num;
      if (i < 6) {
        num = "f"+ConvertIntToString(i)+"nw0000";
        wavefile = "keele/16kHz/"+num+".wav";
      } else {
        num = "m"+ConvertIntToString(i-5)+"nw0000";
        wavefile = "keele/16kHz/"+num+".wav";
      }
      KALDI_LOG << "--- " << wavefile << " ---";
      std::ifstream is(wavefile.c_str(), std::ios_base::binary);
      WaveData wave;
      wave.Read(is);
      KALDI_ASSERT(wave.Data().NumRows() == 1);
      SubVector<BaseFloat> waveform(wave.Data(), 0);
      // use pitch code with default configuration..
      PitchExtractionOptions op;
      op.penalty_factor = k * 0.05;
      op.nccf_ballast = 0.1;
      // compute pitch.
      Matrix<BaseFloat> m;
      ComputeKaldiPitch(op, waveform, &m);
      std::string penaltyfactor = ConvertIntToString(k);
      std::string outfile = "keele/tmp/+"+num+"-kaldi-penalty-"+penaltyfactor+".txt";
      std::ofstream os(outfile.c_str());
      m.Write(os, false);
    }
  }
}
static void UnitTestKeeleNccfBallast() {
  KALDI_LOG << "=== UnitTestKeeleNccfBallast() ===";
  for (int32 k = 1; k < 10; k++) {
    for (int32 i = 1; i < 2; i++) {
      std::string wavefile;
      std::string num;
      if (i < 6) {
        num = "f"+ConvertIntToString(i)+"nw0000";
        wavefile = "keele/16kHz/"+num+".wav";
      } else {
        num = "m"+ConvertIntToString(i-5)+"nw0000";
        wavefile = "keele/16kHz/"+num+".wav";
      }
      KALDI_LOG << "--- " << wavefile << " ---";
      std::ifstream is(wavefile.c_str(), std::ios_base::binary);
      WaveData wave;
      wave.Read(is);
      KALDI_ASSERT(wave.Data().NumRows() == 1);
      SubVector<BaseFloat> waveform(wave.Data(), 0);
      // use pitch code with default configuration..
      PitchExtractionOptions op;
      op.nccf_ballast = 0.05 * k;
      KALDI_LOG << " nccf_ballast " << op.nccf_ballast;
      // compute pitch.
      Matrix<BaseFloat> m;
      ComputeKaldiPitch(op, waveform, &m);
      std::string nccfballast = ConvertIntToString(op.nccf_ballast);
      std::string outfile = "keele/tmp/+"+num
        +"-kaldi-nccf-ballast-"+nccfballast+".txt";
      std::ofstream os(outfile.c_str());
      m.Write(os, false);
    }
  }
}

static void UnitTestPitchExtractionSpeed() {
  KALDI_LOG << "=== UnitTestPitchExtractionSpeed() ===";
  // use pitch code with default configuration..
  PitchExtractionOptions op;
  op.nccf_ballast = 0.1;
  op.lowpass_cutoff = 1000;
  for (int32 i = 1; i < 2; i++) {
    std::string wavefile;
    std::string num;
    if (i < 6) {
      num = "f"+ConvertIntToString(i)+"nw0000";
      wavefile = "keele/16kHz/"+num+".wav";
    } else {
      num = "m"+ConvertIntToString(i-5)+"nw0000";
      wavefile = "keele/16kHz/"+num+".wav";
    }
    KALDI_LOG << "--- " << wavefile << " ---";
    std::ifstream is(wavefile.c_str(), std::ios_base::binary);
    WaveData wave;
    wave.Read(is);
    KALDI_ASSERT(wave.Data().NumRows() == 1);
    SubVector<BaseFloat> waveform(wave.Data(), 0);
    // compute pitch.
    int test_num = 10;
    Matrix<BaseFloat> m;
    Timer timer;
    for (int32 t = 0; t < test_num; t++)
      ComputeKaldiPitch(op, waveform, &m);
    double tot_time = timer.Elapsed(),
        speech_time = test_num * waveform.Dim() / wave.SampFreq();
    KALDI_LOG << " Pitch extraction time per second of speech is "
              << (tot_time / speech_time) << " seconds.";
  }
}
static void UnitTestPitchExtractorCompareKeele() {
  KALDI_LOG << "=== UnitTestPitchExtractorCompareKeele() ===";
  // use pitch code with default configuration..
  PitchExtractionOptions op;
  op.nccf_ballast = 0.1;
  for (int32 i = 1; i < 11; i++) {
    std::string wavefile;
    std::string num;
    if (i < 6) {
      num = "f"+ConvertIntToString(i)+"nw0000";
      wavefile = "keele/16kHz/"+num+".wav";
    } else {
      num = "m"+ConvertIntToString(i-5)+"nw0000";
      wavefile = "keele/16kHz/"+num+".wav";
    }
    KALDI_LOG << "--- " << wavefile << " ---";
    std::ifstream is(wavefile.c_str(), std::ios_base::binary);
    WaveData wave;
    wave.Read(is);
    KALDI_ASSERT(wave.Data().NumRows() == 1);
    SubVector<BaseFloat>  waveform(wave.Data(), 0);
    // compute pitch.
    Matrix<BaseFloat> m;
    ComputeKaldiPitch(op, waveform, &m);
    std::string outfile = "keele/tmp/+"+num+"-speedup-kaldi1.txt";
    std::ofstream os(outfile.c_str());
    m.Write(os, false);
  }
}
void UnitTestDiffSampleRate() {
  // you need to use sox to change sampling rate
  // e.g. sox -r 10k input.wav output.wav
  // put them in keele/(samp_rate in kHz)+"kHz" e.g. keele/10kHz
  int sample_rate = 16000;
  PitchExtractionOptions op;
  op.samp_freq = static_cast<double>(sample_rate);
  op.lowpass_cutoff = 1000;
  op.max_f0 = 400;
  std::string samp_rate = ConvertIntToString(sample_rate/1000);
  for (int32 i = 1; i < 11; i++) {
    std::string wavefile;
    std::string num;
    if (i < 6) {
      num = "f"+ConvertIntToString(i)+"nw0000";
      wavefile = "keele/"+samp_rate+"kHz/"+num+".wav";
    } else {
      num = "m"+ConvertIntToString(i-5)+"nw0000";
      wavefile = "keele/"+samp_rate+"kHz/"+num+".wav";
    }
    KALDI_LOG << "--- " << wavefile << " ---";
    std::ifstream is(wavefile.c_str(), std::ios_base::binary);
    WaveData wave;
    wave.Read(is);
    KALDI_ASSERT(wave.Data().NumRows() == 1);
    SubVector<BaseFloat> waveform(wave.Data(), 0);
    Matrix<BaseFloat> m;
    ComputeKaldiPitch(op, waveform, &m);
    std::string outfile = "keele/tmp/+"+num+"-kaldi-samp-freq-"+samp_rate+"kHz.txt";
    std::ofstream os(outfile.c_str());
    m.Write(os, false);
  }
}
void UnitTestProcess() {
  for (int32 i = 1; i < 11; i++) {
    std::string wavefile;
    std::string num;
    if (i < 6) {
      num = "f"+ConvertIntToString(i)+"nw0000";
      wavefile = "keele/16kHz/"+num+".wav";
    } else {
      num = "m"+ConvertIntToString(i-5)+"nw0000";
      wavefile = "keele/16kHz/"+num+".wav";
    }
    KALDI_LOG << "--- " << wavefile << " ---";
    std::ifstream is(wavefile.c_str(), std::ios_base::binary);
    WaveData wave;
    wave.Read(is);
    KALDI_ASSERT(wave.Data().NumRows() == 1);
    SubVector<BaseFloat> waveform(wave.Data(), 0);
    PitchExtractionOptions op;
    op.lowpass_cutoff = 1000;
    op.nccf_ballast = 0.1;
    op.max_f0 = 400;
    Matrix<BaseFloat> m, m2;
    ComputeKaldiPitch(op, waveform, &m);
    ProcessPitchOptions postprop_op;
    // postprop_op.pov_nonlinearity = 2;
    // Use zero noise, or the features won't be identical.
    postprop_op.delta_pitch_noise_stddev = 0.0;
    ProcessPitch(postprop_op, m, &m2);

    std::string outfile = "keele/tmp/+"+num+"-processed-kaldi.txt";
    std::ofstream os(outfile.c_str());
    m2.Write(os, false);
  }
}

static void UnitTestFeatNoKeele() {
  UnitTestSimple();
  UnitTestPieces();
  UnitTestSnipEdges();
  UnitTestDelay();
  UnitTestSearch();
}

static void UnitTestFeatWithKeele() {
  UnitTestProcess();
  UnitTestKeele();
  UnitTestComputeGPE();
  UnitTestPenaltyFactor();
  UnitTestKeeleNccfBallast();
  UnitTestPitchExtractionSpeed();
  UnitTestPitchExtractorCompareKeele();
  UnitTestDiffSampleRate();
}

}  // namespace kaldi

int main() {
  using namespace kaldi;

  SetVerboseLevel(3);
  try {
    UnitTestFeatNoKeele();
    if (DirExist("keele/16kHz")) {
      UnitTestFeatWithKeele();
    } else {
      KALDI_LOG
          << "Not running tests that require the Keele database, "
          << "please ask g.meyer@liverpool.ac.uk for the database if you need it.\n"
          << "Once you have the keele/ subdirectory, containing *.{pel,pet,pev,raw,wav}, do this:\n"
          << "cd keele; mkdir -p 16kHz; mkdir -p tmp; for x in *.wav; do \n"
          << "sox $x -r 16000 16kHz/$x; done  \n"
          << "mkdir -p keele-true-lags; for f in *.pev; do \n"
          << "out_f=keele-true-lags/$(echo $f | sed s:pev:txt:); ( echo ' ['; len=`cat $f | wc -l`; \n"
          << "head -n $(($len-1)) $f | tail -n $(($len-14)) ; echo -n ']') >$out_f; done \n"
          << "\n"
          << "Note: the GPE reported in paper is computed using pseudo-ground-truth pitch obtained\n"
          << "by voting among the pitch trackers mentioned in the paper.\n";
    }
    KALDI_LOG << "Tests succeeded.";
    return 0;
  } catch(const std::exception &e) {
    KALDI_ERR << e.what();
    return 1;
  }
}