compute-cmvn-stats-two-channel.cc
7.79 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// featbin/compute-cmvn-stats-two-channel.cc
// Copyright 2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "matrix/kaldi-matrix.h"
#include "transform/cmvn.h"
namespace kaldi {
/*
This function gets the utterances that are the first field of the
contents of the file reco2file_and_channel_rxfilename, and sorts
them into pairs corresponding to A/B sides, or singletons in case
we get one without the other.
*/
void GetUtterancePairs(const std::string &reco2file_and_channel_rxfilename,
std::vector<std::vector<std::string> > *utt_pairs) {
Input ki(reco2file_and_channel_rxfilename);
std::string line;
std::map<std::string, std::vector<std::string> > call_to_uttlist;
while (std::getline(ki.Stream(), line)) {
std::vector<std::string> split_line;
SplitStringToVector(line, " \t\r", true, &split_line);
if (split_line.size() != 3) {
KALDI_ERR << "Expecting 3 fields per line of reco2file_and_channel file "
<< PrintableRxfilename(reco2file_and_channel_rxfilename)
<< ", got: " << line;
}
// lines like: sw02001-A sw02001 A
std::string utt = split_line[0],
call = split_line[1];
call_to_uttlist[call].push_back(utt);
}
for (std::map<std::string, std::vector<std::string> >::const_iterator
iter = call_to_uttlist.begin(); iter != call_to_uttlist.end(); ++iter) {
const std::vector<std::string> &uttlist = iter->second;
if (uttlist.size() == 2) {
utt_pairs->push_back(uttlist);
} else {
KALDI_WARN << "Call " << iter->first << " has " << uttlist.size()
<< " utterances, expected two; treating them singly.";
for (size_t i = 0; i < uttlist.size(); i++) {
std::vector<std::string> singleton_list;
singleton_list.push_back(uttlist[i]);
utt_pairs->push_back(singleton_list);
}
}
}
}
void AccCmvnStatsForPair(const std::string &utt1, const std::string &utt2,
const MatrixBase<BaseFloat> &feats1,
const MatrixBase<BaseFloat> &feats2,
BaseFloat quieter_channel_weight,
MatrixBase<double> *cmvn_stats1,
MatrixBase<double> *cmvn_stats2) {
KALDI_ASSERT(feats1.NumCols() == feats2.NumCols()); // same dim.
if (feats1.NumRows() != feats2.NumRows()) {
KALDI_WARN << "Number of frames differ between " << utt1 << " and " << utt2
<< ": " << feats1.NumRows() << " vs. " << feats2.NumRows()
<< ", treating them separately.";
AccCmvnStats(feats1, NULL, cmvn_stats1);
AccCmvnStats(feats2, NULL, cmvn_stats2);
return;
}
for (int32 i = 0; i < feats1.NumRows(); i++) {
if (feats1(i, 0) > feats2(i, 0)) {
AccCmvnStats(feats1.Row(i), 1.0, cmvn_stats1);
AccCmvnStats(feats2.Row(i), quieter_channel_weight, cmvn_stats2);
}
else {
AccCmvnStats(feats2.Row(i), 1.0, cmvn_stats2);
AccCmvnStats(feats1.Row(i), quieter_channel_weight, cmvn_stats1);
}
}
}
}
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using kaldi::int32;
const char *usage =
"Compute cepstral mean and variance normalization statistics\n"
"Specialized for two-sided telephone data where we only accumulate\n"
"the louder of the two channels at each frame (and add it to that\n"
"side's stats). Reads a 'reco2file_and_channel' file, normally like\n"
"sw02001-A sw02001 A\n"
"sw02001-B sw02001 B\n"
"sw02005-A sw02005 A\n"
"sw02005-B sw02005 B\n"
"interpreted as <utterance-id> <call-id> <side> and for each <call-id>\n"
"that has two sides, does the 'only-the-louder' computation, else doesn\n"
"per-utterance stats in the normal way.\n"
"Note: loudness is judged by the first feature component, either energy or c0;\n"
"only applicable to MFCCs or PLPs (this code could be modified to handle filterbanks).\n"
"\n"
"Usage: compute-cmvn-stats-two-channel [options] <reco2file-and-channel> <feats-rspecifier> <stats-wspecifier>\n"
"e.g.: compute-cmvn-stats-two-channel data/train_unseg/reco2file_and_channel scp:data/train_unseg/feats.scp ark,t:-\n";
ParseOptions po(usage);
BaseFloat quieter_channel_weight = 0.01;
po.Register("quieter-channel-weight", &quieter_channel_weight,
"For the quieter channel, apply this weight to the stats, so "
"that we still get stats if one channel always dominates.");
po.Read(argc, argv);
if (po.NumArgs() != 3) {
po.PrintUsage();
exit(1);
}
int32 num_done = 0, num_err = 0;
std::string reco2file_and_channel_rxfilename = po.GetArg(1),
feats_rspecifier = po.GetArg(2),
stats_wspecifier = po.GetArg(3);
std::vector<std::vector<std::string> > utt_pairs;
GetUtterancePairs(reco2file_and_channel_rxfilename, &utt_pairs);
RandomAccessBaseFloatMatrixReader feat_reader(feats_rspecifier);
DoubleMatrixWriter writer(stats_wspecifier);
for (size_t i = 0; i < utt_pairs.size(); i++) {
std::vector<std::string> this_pair(utt_pairs[i]);
KALDI_ASSERT(this_pair.size() == 2 || this_pair.size() == 1);
if (this_pair.size() == 2) {
std::string utt1 = this_pair[0], utt2 = this_pair[1];
if (!feat_reader.HasKey(utt1)) {
KALDI_WARN << "No feature data for utterance " << utt1;
num_err++;
this_pair[0] = utt2;
this_pair.pop_back();
// and fall through to the singleton code below.
} else if (!feat_reader.HasKey(utt2)) {
KALDI_WARN << "No feature data for utterance " << utt2;
num_err++;
this_pair.pop_back();
// and fall through to the singleton code below.
} else {
Matrix<BaseFloat> feats1 = feat_reader.Value(utt1),
feats2 = feat_reader.Value(utt2);
int32 dim = feats1.NumCols();
Matrix<double> cmvn_stats1(2, dim + 1), cmvn_stats2(2, dim + 1);
AccCmvnStatsForPair(utt1, utt2, feats1, feats2, quieter_channel_weight,
&cmvn_stats1, &cmvn_stats2);
writer.Write(utt1, cmvn_stats1);
writer.Write(utt2, cmvn_stats2);
num_done += 2;
continue; // continue so we don't go to the singleton-processing code
// below.
}
}
// process singletons.
std::string utt = this_pair[0];
if (!feat_reader.HasKey(utt)) {
KALDI_WARN << "No feature data for utterance " << utt;
num_err++;
continue;
}
const Matrix<BaseFloat> &feats = feat_reader.Value(utt);
Matrix<double> cmvn_stats(2, feats.NumCols() + 1);
AccCmvnStats(feats, NULL, &cmvn_stats);
writer.Write(utt, cmvn_stats);
num_done++;
}
KALDI_LOG << "Done accumulating CMVN stats for " << num_done
<< " utterances; " << num_err << " had errors.";
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}