lattice-weight.h
29.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
// fstext/lattice-weight.h
// Copyright 2009-2012 Microsoft Corporation
// Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_FSTEXT_LATTICE_WEIGHT_H_
#define KALDI_FSTEXT_LATTICE_WEIGHT_H_
#include "fst/fstlib.h"
#include "base/kaldi-common.h"
namespace fst {
// Declare weight type for lattice... will import to namespace kaldi. has two
// members, value1_ and value2_, of type BaseFloat (normally equals float). It
// is basically the same as the tropical semiring on value1_+value2_, except it
// keeps track of a and b separately. More precisely, it is equivalent to the
// lexicographic semiring on (value1_+value2_), (value1_-value2_)
template<class FloatType>
class LatticeWeightTpl;
template <class FloatType>
inline ostream &operator <<(ostream &strm, const LatticeWeightTpl<FloatType> &w);
template <class FloatType>
inline istream &operator >>(istream &strm, LatticeWeightTpl<FloatType> &w);
template<class FloatType>
class LatticeWeightTpl {
public:
typedef FloatType T; // normally float.
typedef LatticeWeightTpl ReverseWeight;
inline T Value1() const { return value1_; }
inline T Value2() const { return value2_; }
inline void SetValue1(T f) { value1_ = f; }
inline void SetValue2(T f) { value2_ = f; }
LatticeWeightTpl(): value1_{}, value2_{} { }
LatticeWeightTpl(T a, T b): value1_(a), value2_(b) {}
LatticeWeightTpl(const LatticeWeightTpl &other): value1_(other.value1_), value2_(other.value2_) { }
LatticeWeightTpl &operator=(const LatticeWeightTpl &w) {
value1_ = w.value1_;
value2_ = w.value2_;
return *this;
}
LatticeWeightTpl<FloatType> Reverse() const {
return *this;
}
static const LatticeWeightTpl Zero() {
return LatticeWeightTpl(numeric_limits<T>::infinity(),
numeric_limits<T>::infinity());
}
static const LatticeWeightTpl One() {
return LatticeWeightTpl(0.0, 0.0);
}
static const string &Type() {
static const string type = (sizeof(T) == 4 ? "lattice4" : "lattice8") ;
return type;
}
static const LatticeWeightTpl NoWeight() {
return LatticeWeightTpl(numeric_limits<FloatType>::quiet_NaN(),
numeric_limits<FloatType>::quiet_NaN());
}
bool Member() const {
// value1_ == value1_ tests for NaN.
// also test for no -inf, and either both or neither
// must be +inf, and
if (value1_ != value1_ || value2_ != value2_) return false; // NaN
if (value1_ == -numeric_limits<T>::infinity() ||
value2_ == -numeric_limits<T>::infinity()) return false; // -infty not allowed
if (value1_ == numeric_limits<T>::infinity() ||
value2_ == numeric_limits<T>::infinity()) {
if (value1_ != numeric_limits<T>::infinity() ||
value2_ != numeric_limits<T>::infinity()) return false; // both must be +infty;
// this is necessary so that the semiring has only one zero.
}
return true;
}
LatticeWeightTpl Quantize(float delta = kDelta) const {
if (value1_+value2_ == -numeric_limits<T>::infinity()) {
return LatticeWeightTpl(-numeric_limits<T>::infinity(), -numeric_limits<T>::infinity());
} else if (value1_+value2_ == numeric_limits<T>::infinity()) {
return LatticeWeightTpl(numeric_limits<T>::infinity(), numeric_limits<T>::infinity());
} else if (value1_+value2_ != value1_+value2_) { // NaN
return LatticeWeightTpl(value1_+value2_, value1_+value2_);
} else {
return LatticeWeightTpl(floor(value1_/delta + 0.5F)*delta, floor(value2_/delta + 0.5F) * delta);
}
}
static constexpr uint64 Properties() {
return kLeftSemiring | kRightSemiring | kCommutative |
kPath | kIdempotent;
}
// This is used in OpenFst for binary I/O. This is OpenFst-style,
// not Kaldi-style, I/O.
istream &Read(istream &strm) {
// Always read/write as float, even if T is double,
// so we can use OpenFst-style read/write and still maintain
// compatibility when compiling with different FloatTypes
ReadType(strm, &value1_);
ReadType(strm, &value2_);
return strm;
}
// This is used in OpenFst for binary I/O. This is OpenFst-style,
// not Kaldi-style, I/O.
ostream &Write(ostream &strm) const {
WriteType(strm, value1_);
WriteType(strm, value2_);
return strm;
}
size_t Hash() const {
size_t ans;
union {
T f;
size_t s;
} u;
u.s = 0;
u.f = value1_;
ans = u.s;
u.f = value2_;
ans += u.s;
return ans;
}
protected:
inline static void WriteFloatType(ostream &strm, const T &f) {
if (f == numeric_limits<T>::infinity())
strm << "Infinity";
else if (f == -numeric_limits<T>::infinity())
strm << "-Infinity";
else if (f != f)
strm << "BadNumber";
else
strm << f;
}
// Internal helper function, used in ReadNoParen.
inline static void ReadFloatType(istream &strm, T &f) {
string s;
strm >> s;
if (s == "Infinity") {
f = numeric_limits<T>::infinity();
} else if (s == "-Infinity") {
f = -numeric_limits<T>::infinity();
} else if (s == "BadNumber") {
f = numeric_limits<T>::quiet_NaN();
} else {
char *p;
f = strtod(s.c_str(), &p);
if (p < s.c_str() + s.size())
strm.clear(std::ios::badbit);
}
}
// Reads LatticeWeight when there are no parentheses around pair terms...
// currently the only form supported.
inline istream &ReadNoParen(
istream &strm, char separator) {
int c;
do {
c = strm.get();
} while (isspace(c));
string s1;
while (c != separator) {
if (c == EOF) {
strm.clear(std::ios::badbit);
return strm;
}
s1 += c;
c = strm.get();
}
istringstream strm1(s1);
ReadFloatType(strm1, value1_); // ReadFloatType is class member function
// read second element
ReadFloatType(strm, value2_);
return strm;
}
friend istream &operator>> <FloatType>(istream&, LatticeWeightTpl<FloatType>&);
friend ostream &operator<< <FloatType>(ostream&, const LatticeWeightTpl<FloatType>&);
private:
T value1_;
T value2_;
};
/* ScaleTupleWeight is a function defined for LatticeWeightTpl and
CompactLatticeWeightTpl that mutliplies the pair (value1_, value2_) by a 2x2
matrix. Used, for example, in applying acoustic scaling.
*/
template<class FloatType, class ScaleFloatType>
inline LatticeWeightTpl<FloatType> ScaleTupleWeight(
const LatticeWeightTpl<FloatType> &w,
const vector<vector<ScaleFloatType> > &scale) {
// Without the next special case we'd get NaNs from infinity * 0
if (w.Value1() == numeric_limits<FloatType>::infinity())
return LatticeWeightTpl<FloatType>::Zero();
return LatticeWeightTpl<FloatType>(scale[0][0] * w.Value1() + scale[0][1] * w.Value2(),
scale[1][0] * w.Value1() + scale[1][1] * w.Value2());
}
/* For testing purposes and in case it's ever useful, we define a similar
function to apply to LexicographicWeight and the like, templated on
TropicalWeight<float> etc.; we use PairWeight which is the base class of
LexicographicWeight.
*/
template<class FloatType, class ScaleFloatType>
inline PairWeight<TropicalWeightTpl<FloatType>,
TropicalWeightTpl<FloatType> > ScaleTupleWeight(
const PairWeight<TropicalWeightTpl<FloatType>,
TropicalWeightTpl<FloatType> > &w,
const vector<vector<ScaleFloatType> > &scale) {
typedef TropicalWeightTpl<FloatType> BaseType;
typedef PairWeight<BaseType, BaseType> PairType;
const BaseType zero = BaseType::Zero();
// Without the next special case we'd get NaNs from infinity * 0
if (w.Value1() == zero || w.Value2() == zero)
return PairType(zero, zero);
FloatType f1 = w.Value1().Value(), f2 = w.Value2().Value();
return PairType(BaseType(scale[0][0] * f1 + scale[0][1] * f2),
BaseType(scale[1][0] * f1 + scale[1][1] * f2));
}
template<class FloatType>
inline bool operator==(const LatticeWeightTpl<FloatType> &wa,
const LatticeWeightTpl<FloatType> &wb) {
// Volatile qualifier thwarts over-aggressive compiler optimizations
// that lead to problems esp. with NaturalLess().
volatile FloatType va1 = wa.Value1(), va2 = wa.Value2(),
vb1 = wb.Value1(), vb2 = wb.Value2();
return (va1 == vb1 && va2 == vb2);
}
template<class FloatType>
inline bool operator!=(const LatticeWeightTpl<FloatType> &wa,
const LatticeWeightTpl<FloatType> &wb) {
// Volatile qualifier thwarts over-aggressive compiler optimizations
// that lead to problems esp. with NaturalLess().
volatile FloatType va1 = wa.Value1(), va2 = wa.Value2(),
vb1 = wb.Value1(), vb2 = wb.Value2();
return (va1 != vb1 || va2 != vb2);
}
// We define a Compare function LatticeWeightTpl even though it's
// not required by the semiring standard-- it's just more efficient
// to do it this way rather than using the NaturalLess template.
/// Compare returns -1 if w1 < w2, +1 if w1 > w2, and 0 if w1 == w2.
template<class FloatType>
inline int Compare (const LatticeWeightTpl<FloatType> &w1,
const LatticeWeightTpl<FloatType> &w2) {
FloatType f1 = w1.Value1() + w1.Value2(),
f2 = w2.Value1() + w2.Value2();
if (f1 < f2) { return 1; } // having smaller cost means you're larger
// in the semiring [higher probability]
else if (f1 > f2) { return -1; }
// mathematically we should be comparing (w1.value1_-w1.value2_ < w2.value1_-w2.value2_)
// in the next line, but add w1.value1_+w1.value2_ = w2.value1_+w2.value2_ to both sides and
// divide by two, and we get the simpler equivalent form w1.value1_ < w2.value1_.
else if (w1.Value1() < w2.Value1()) { return 1; }
else if (w1.Value1() > w2.Value1()) { return -1; }
else { return 0; }
}
template<class FloatType>
inline LatticeWeightTpl<FloatType> Plus(const LatticeWeightTpl<FloatType> &w1,
const LatticeWeightTpl<FloatType> &w2) {
return (Compare(w1, w2) >= 0 ? w1 : w2);
}
// For efficiency, override the NaturalLess template class.
template<class FloatType>
class NaturalLess<LatticeWeightTpl<FloatType> > {
public:
typedef LatticeWeightTpl<FloatType> Weight;
NaturalLess() {}
bool operator()(const Weight &w1, const Weight &w2) const {
// NaturalLess is a negative order (opposite to normal ordering).
// This operator () corresponds to "<" in the negative order, which
// corresponds to the ">" in the normal order.
return (Compare(w1, w2) == 1);
}
};
template<>
class NaturalLess<LatticeWeightTpl<float> > {
public:
typedef LatticeWeightTpl<float> Weight;
NaturalLess() {}
bool operator()(const Weight &w1, const Weight &w2) const {
// NaturalLess is a negative order (opposite to normal ordering).
// This operator () corresponds to "<" in the negative order, which
// corresponds to the ">" in the normal order.
return (Compare(w1, w2) == 1);
}
};
template<>
class NaturalLess<LatticeWeightTpl<double> > {
public:
typedef LatticeWeightTpl<double> Weight;
NaturalLess() {}
bool operator()(const Weight &w1, const Weight &w2) const {
// NaturalLess is a negative order (opposite to normal ordering).
// This operator () corresponds to "<" in the negative order, which
// corresponds to the ">" in the normal order.
return (Compare(w1, w2) == 1);
}
};
template<class FloatType>
inline LatticeWeightTpl<FloatType> Times(const LatticeWeightTpl<FloatType> &w1,
const LatticeWeightTpl<FloatType> &w2) {
return LatticeWeightTpl<FloatType>(w1.Value1()+w2.Value1(), w1.Value2()+w2.Value2());
}
// divide w1 by w2 (on left/right/any doesn't matter as
// commutative).
template<class FloatType>
inline LatticeWeightTpl<FloatType> Divide(const LatticeWeightTpl<FloatType> &w1,
const LatticeWeightTpl<FloatType> &w2,
DivideType typ = DIVIDE_ANY) {
typedef FloatType T;
T a = w1.Value1() - w2.Value1(), b = w1.Value2() - w2.Value2();
if (a != a || b != b || a == -numeric_limits<T>::infinity()
|| b == -numeric_limits<T>::infinity()) {
KALDI_WARN << "LatticeWeightTpl::Divide, NaN or invalid number produced. "
<< "[dividing by zero?] Returning zero";
return LatticeWeightTpl<T>::Zero();
}
if (a == numeric_limits<T>::infinity() ||
b == numeric_limits<T>::infinity())
return LatticeWeightTpl<T>::Zero(); // not a valid number if only one is infinite.
return LatticeWeightTpl<T>(a, b);
}
template<class FloatType>
inline bool ApproxEqual(const LatticeWeightTpl<FloatType> &w1,
const LatticeWeightTpl<FloatType> &w2,
float delta = kDelta) {
if (w1.Value1() == w2.Value1() && w1.Value2() == w2.Value2()) return true; // handles Zero().
return (fabs((w1.Value1() + w1.Value2()) - (w2.Value1() + w2.Value2())) <= delta);
}
template <class FloatType>
inline ostream &operator <<(ostream &strm, const LatticeWeightTpl<FloatType> &w) {
LatticeWeightTpl<FloatType>::WriteFloatType(strm, w.Value1());
CHECK(FLAGS_fst_weight_separator.size() == 1);
strm << FLAGS_fst_weight_separator[0]; // comma by default;
// may or may not be settable from Kaldi programs.
LatticeWeightTpl<FloatType>::WriteFloatType(strm, w.Value2());
return strm;
}
template <class FloatType>
inline istream &operator >>(istream &strm, LatticeWeightTpl<FloatType> &w1) {
CHECK(FLAGS_fst_weight_separator.size() == 1);
// separator defaults to ','
return w1.ReadNoParen(strm, FLAGS_fst_weight_separator[0]);
}
// CompactLattice will be an acceptor (accepting the words/output-symbols),
// with the weights and input-symbol-seqs on the arcs.
// There must be a total order on W. We assume for the sake of efficiency
// that there is a function
// Compare(W w1, W w2) that returns -1 if w1 < w2, +1 if w1 > w2, and
// zero if w1 == w2, and Plus for type W returns (Compare(w1,w2) >= 0 ? w1 : w2).
template<class WeightType, class IntType>
class CompactLatticeWeightTpl {
public:
typedef WeightType W;
typedef CompactLatticeWeightTpl<WeightType, IntType> ReverseWeight;
// Plus is like LexicographicWeight on the pair (weight_, string_), but where we
// use standard lexicographic order on string_ [this is not the same as
// NaturalLess on the StringWeight equivalent, which does not define a
// total order].
// Times, Divide obvious... (support both left & right division..)
// CommonDivisor would need to be coded separately.
CompactLatticeWeightTpl() { }
CompactLatticeWeightTpl(const WeightType &w, const vector<IntType> &s):
weight_(w), string_(s) { }
CompactLatticeWeightTpl &operator=(const CompactLatticeWeightTpl<WeightType, IntType> &w) {
weight_ = w.weight_;
string_ = w.string_;
return *this;
}
const W &Weight() const { return weight_; }
const vector<IntType> &String() const { return string_; }
void SetWeight(const W &w) { weight_ = w; }
void SetString(const vector<IntType> &s) { string_ = s; }
static const CompactLatticeWeightTpl<WeightType, IntType> Zero() {
return CompactLatticeWeightTpl<WeightType, IntType>(
WeightType::Zero(), vector<IntType>());
}
static const CompactLatticeWeightTpl<WeightType, IntType> One() {
return CompactLatticeWeightTpl<WeightType, IntType>(
WeightType::One(), vector<IntType>());
}
inline static string GetIntSizeString() {
char buf[2];
buf[0] = '0' + sizeof(IntType);
buf[1] = '\0';
return buf;
}
static const string &Type() {
static const string type = "compact" + WeightType::Type()
+ GetIntSizeString();
return type;
}
static const CompactLatticeWeightTpl<WeightType, IntType> NoWeight() {
return CompactLatticeWeightTpl<WeightType, IntType>(
WeightType::NoWeight(), std::vector<IntType>());
}
CompactLatticeWeightTpl<WeightType, IntType> Reverse() const {
size_t s = string_.size();
vector<IntType> v(s);
for(size_t i = 0; i < s; i++)
v[i] = string_[s-i-1];
return CompactLatticeWeightTpl<WeightType, IntType>(weight_, v);
}
bool Member() const {
// a semiring has only one zero, this is the important property
// we're trying to maintain here. So force string_ to be empty if
// w_ == zero.
if (!weight_.Member()) return false;
if (weight_ == WeightType::Zero())
return string_.empty();
else
return true;
}
CompactLatticeWeightTpl Quantize(float delta = kDelta) const {
return CompactLatticeWeightTpl(weight_.Quantize(delta), string_);
}
static constexpr uint64 Properties() {
return kLeftSemiring | kRightSemiring | kPath | kIdempotent;
}
// This is used in OpenFst for binary I/O. This is OpenFst-style,
// not Kaldi-style, I/O.
istream &Read(istream &strm) {
weight_.Read(strm);
if (strm.fail()){ return strm; }
int32 sz;
ReadType(strm, &sz);
if (strm.fail()){ return strm; }
if (sz < 0) {
KALDI_WARN << "Negative string size! Read failure";
strm.clear(std::ios::badbit);
return strm;
}
string_.resize(sz);
for(int32 i = 0; i < sz; i++) {
ReadType(strm, &(string_[i]));
}
return strm;
}
// This is used in OpenFst for binary I/O. This is OpenFst-style,
// not Kaldi-style, I/O.
ostream &Write(ostream &strm) const {
weight_.Write(strm);
if (strm.fail()){ return strm; }
int32 sz = static_cast<int32>(string_.size());
WriteType(strm, sz);
for(int32 i = 0; i < sz; i++)
WriteType(strm, string_[i]);
return strm;
}
size_t Hash() const {
size_t ans = weight_.Hash();
// any weird numbers here are largish primes
size_t sz = string_.size(), mult = 6967;
for(size_t i = 0; i < sz; i++) {
ans += string_[i] * mult;
mult *= 7499;
}
return ans;
}
private:
W weight_;
vector<IntType> string_;
};
template<class WeightType, class IntType>
inline bool operator==(const CompactLatticeWeightTpl<WeightType, IntType> &w1,
const CompactLatticeWeightTpl<WeightType, IntType> &w2) {
return (w1.Weight() == w2.Weight() && w1.String() == w2.String());
}
template<class WeightType, class IntType>
inline bool operator!=(const CompactLatticeWeightTpl<WeightType, IntType> &w1,
const CompactLatticeWeightTpl<WeightType, IntType> &w2) {
return (w1.Weight() != w2.Weight() || w1.String() != w2.String());
}
template<class WeightType, class IntType>
inline bool ApproxEqual(const CompactLatticeWeightTpl<WeightType, IntType> &w1,
const CompactLatticeWeightTpl<WeightType, IntType> &w2,
float delta = kDelta) {
return (ApproxEqual(w1.Weight(), w2.Weight(), delta) && w1.String() == w2.String());
}
// Compare is not part of the standard for weight types, but used internally for
// efficiency. The comparison here first compares the weight; if this is the
// same, it compares the string. The comparison on strings is: first compare
// the length, if this is the same, use lexicographical order. We can't just
// use the lexicographical order because this would destroy the distributive
// property of multiplication over addition, taking into account that addition
// uses Compare. The string element of "Compare" isn't super-important in
// practical terms; it's only needed to ensure that Plus always give consistent
// answers and is symmetric. It's essentially for tie-breaking, but we need to
// make sure all the semiring axioms are satisfied otherwise OpenFst might
// break.
template<class WeightType, class IntType>
inline int Compare (const CompactLatticeWeightTpl<WeightType, IntType> &w1,
const CompactLatticeWeightTpl<WeightType, IntType> &w2) {
int c1 = Compare(w1.Weight(), w2.Weight());
if (c1 != 0) return c1;
int l1 = w1.String().size(), l2 = w2.String().size();
// Use opposite order on the string lengths, so that if the costs are the same,
// the shorter string wins.
if (l1 > l2) return -1;
else if (l1 < l2) return 1;
for(int i = 0; i < l1; i++) {
if (w1.String()[i] < w2.String()[i]) return -1;
else if (w1.String()[i] > w2.String()[i]) return 1;
}
return 0;
}
// For efficiency, override the NaturalLess template class.
template<class FloatType, class IntType>
class NaturalLess<CompactLatticeWeightTpl<LatticeWeightTpl<FloatType>, IntType> > {
public:
typedef CompactLatticeWeightTpl<LatticeWeightTpl<FloatType>, IntType> Weight;
NaturalLess() {}
bool operator()(const Weight &w1, const Weight &w2) const {
// NaturalLess is a negative order (opposite to normal ordering).
// This operator () corresponds to "<" in the negative order, which
// corresponds to the ">" in the normal order.
return (Compare(w1, w2) == 1);
}
};
template<>
class NaturalLess<CompactLatticeWeightTpl<LatticeWeightTpl<float>, int32> > {
public:
typedef CompactLatticeWeightTpl<LatticeWeightTpl<float>, int32> Weight;
NaturalLess() {}
bool operator()(const Weight &w1, const Weight &w2) const {
// NaturalLess is a negative order (opposite to normal ordering).
// This operator () corresponds to "<" in the negative order, which
// corresponds to the ">" in the normal order.
return (Compare(w1, w2) == 1);
}
};
template<>
class NaturalLess<CompactLatticeWeightTpl<LatticeWeightTpl<double>, int32> > {
public:
typedef CompactLatticeWeightTpl<LatticeWeightTpl<double>, int32> Weight;
NaturalLess() {}
bool operator()(const Weight &w1, const Weight &w2) const {
// NaturalLess is a negative order (opposite to normal ordering).
// This operator () corresponds to "<" in the negative order, which
// corresponds to the ">" in the normal order.
return (Compare(w1, w2) == 1);
}
};
// Make sure Compare is defined for TropicalWeight, so everything works
// if we substitute LatticeWeight for TropicalWeight.
inline int Compare(const TropicalWeight &w1,
const TropicalWeight &w2) {
float f1 = w1.Value(), f2 = w2.Value();
if (f1 == f2) return 0;
else if (f1 > f2) return -1;
else return 1;
}
template<class WeightType, class IntType>
inline CompactLatticeWeightTpl<WeightType, IntType> Plus(
const CompactLatticeWeightTpl<WeightType, IntType> &w1,
const CompactLatticeWeightTpl<WeightType, IntType> &w2) {
return (Compare(w1, w2) >= 0 ? w1 : w2);
}
template<class WeightType, class IntType>
inline CompactLatticeWeightTpl<WeightType, IntType> Times(
const CompactLatticeWeightTpl<WeightType, IntType> &w1,
const CompactLatticeWeightTpl<WeightType, IntType> &w2) {
WeightType w = Times(w1.Weight(), w2.Weight());
if (w == WeightType::Zero()) {
return CompactLatticeWeightTpl<WeightType, IntType>::Zero();
// special case to ensure zero is unique
} else {
vector<IntType> v;
v.resize(w1.String().size() + w2.String().size());
typename vector<IntType>::iterator iter = v.begin();
iter = std::copy(w1.String().begin(), w1.String().end(), iter); // returns end of first range.
std::copy(w2.String().begin(), w2.String().end(), iter);
return CompactLatticeWeightTpl<WeightType, IntType>(w, v);
}
}
template<class WeightType, class IntType>
inline CompactLatticeWeightTpl<WeightType, IntType> Divide(const CompactLatticeWeightTpl<WeightType, IntType> &w1,
const CompactLatticeWeightTpl<WeightType, IntType> &w2,
DivideType div = DIVIDE_ANY) {
if (w1.Weight() == WeightType::Zero()) {
if (w2.Weight() != WeightType::Zero()) {
return CompactLatticeWeightTpl<WeightType, IntType>::Zero();
} else {
KALDI_ERR << "Division by zero [0/0]";
}
} else if (w2.Weight() == WeightType::Zero()) {
KALDI_ERR << "Error: division by zero";
}
WeightType w = Divide(w1.Weight(), w2.Weight());
const vector<IntType> v1 = w1.String(), v2 = w2.String();
if (v2.size() > v1.size()) {
KALDI_ERR << "Cannot divide, length mismatch";
}
typename vector<IntType>::const_iterator v1b = v1.begin(),
v1e = v1.end(), v2b = v2.begin(), v2e = v2.end();
if (div == DIVIDE_LEFT) {
if (!std::equal(v2b, v2e, v1b)) { // v2 must be identical to first part of v1.
KALDI_ERR << "Cannot divide, data mismatch";
}
return CompactLatticeWeightTpl<WeightType, IntType>(
w, vector<IntType>(v1b+(v2e-v2b), v1e)); // return last part of v1.
} else if (div == DIVIDE_RIGHT) {
if (!std::equal(v2b, v2e, v1e-(v2e-v2b))) { // v2 must be identical to last part of v1.
KALDI_ERR << "Cannot divide, data mismatch";
}
return CompactLatticeWeightTpl<WeightType, IntType>(
w, vector<IntType>(v1b, v1e-(v2e-v2b))); // return first part of v1.
} else {
KALDI_ERR << "Cannot divide CompactLatticeWeightTpl with DIVIDE_ANY";
}
return CompactLatticeWeightTpl<WeightType,IntType>::Zero(); // keep compiler happy.
}
template <class WeightType, class IntType>
inline ostream &operator <<(ostream &strm, const CompactLatticeWeightTpl<WeightType, IntType> &w) {
strm << w.Weight();
CHECK(FLAGS_fst_weight_separator.size() == 1);
strm << FLAGS_fst_weight_separator[0]; // comma by default.
for(size_t i = 0; i < w.String().size(); i++) {
strm << w.String()[i];
if (i+1 < w.String().size())
strm << kStringSeparator; // '_'; defined in string-weight.h in OpenFst code.
}
return strm;
}
template <class WeightType, class IntType>
inline istream &operator >>(istream &strm, CompactLatticeWeightTpl<WeightType, IntType> &w) {
std::string s;
strm >> s;
if (strm.fail()) {
return strm;
}
CHECK(FLAGS_fst_weight_separator.size() == 1);
size_t pos = s.find_last_of(FLAGS_fst_weight_separator); // normally ","
if (pos == std::string::npos) {
strm.clear(std::ios::badbit);
return strm;
}
// get parts of str before and after the separator (default: ',');
std::string s1(s, 0, pos), s2(s, pos+1);
std::istringstream strm1(s1);
WeightType weight;
strm1 >> weight;
w.SetWeight(weight);
if (strm1.fail() || !strm1.eof()) {
strm.clear(std::ios::badbit);
return strm;
}
// read string part.
vector<IntType> string;
const char *c = s2.c_str();
while(*c != '\0') {
if (*c == kStringSeparator) // '_'
c++;
char *c2;
long int i = strtol(c, &c2, 10);
if (c2 == c || static_cast<long int>(static_cast<IntType>(i)) != i) {
strm.clear(std::ios::badbit);
return strm;
}
c = c2;
string.push_back(static_cast<IntType>(i));
}
w.SetString(string);
return strm;
}
template<class BaseWeightType, class IntType>
class CompactLatticeWeightCommonDivisorTpl {
public:
typedef CompactLatticeWeightTpl<BaseWeightType, IntType> Weight;
Weight operator()(const Weight &w1, const Weight &w2) const {
// First find longest common prefix of the strings.
typename vector<IntType>::const_iterator s1b = w1.String().begin(),
s1e = w1.String().end(), s2b = w2.String().begin(), s2e = w2.String().end();
while (s1b < s1e && s2b < s2e && *s1b == *s2b) {
s1b++;
s2b++;
}
return Weight(Plus(w1.Weight(), w2.Weight()), vector<IntType>(w1.String().begin(), s1b));
}
};
/** Scales the pair (a, b) of floating-point weights inside a
CompactLatticeWeight by premultiplying it (viewed as a vector)
by a 2x2 matrix "scale".
Assumes there is a ScaleTupleWeight function that applies to "Weight";
this currently only works if Weight equals LatticeWeightTpl<FloatType>
for some FloatType.
*/
template<class Weight, class IntType, class ScaleFloatType>
inline CompactLatticeWeightTpl<Weight, IntType> ScaleTupleWeight(
const CompactLatticeWeightTpl<Weight, IntType> &w,
const vector<vector<ScaleFloatType> > &scale) {
return CompactLatticeWeightTpl<Weight, IntType>(
Weight(ScaleTupleWeight(w.Weight(), scale)), w.String());
}
/** Define some ConvertLatticeWeight functions that are used in various lattice
conversions... make them all templates, some with no arguments, since some
must be templates.*/
template<class Float1, class Float2>
inline void ConvertLatticeWeight(
const LatticeWeightTpl<Float1> &w_in,
LatticeWeightTpl<Float2> *w_out) {
w_out->SetValue1(w_in.Value1());
w_out->SetValue2(w_in.Value2());
}
template<class Float1, class Float2, class Int>
inline void ConvertLatticeWeight(
const CompactLatticeWeightTpl<LatticeWeightTpl<Float1>, Int> &w_in,
CompactLatticeWeightTpl<LatticeWeightTpl<Float2>, Int> *w_out) {
LatticeWeightTpl<Float2> weight2(w_in.Weight().Value1(),
w_in.Weight().Value2());
w_out->SetWeight(weight2);
w_out->SetString(w_in.String());
}
// to convert from Lattice to standard FST
template<class Float1, class Float2>
inline void ConvertLatticeWeight(
const LatticeWeightTpl<Float1> &w_in,
TropicalWeightTpl<Float2> *w_out) {
TropicalWeightTpl<Float2> w1(w_in.Value1());
TropicalWeightTpl<Float2> w2(w_in.Value2());
*w_out = Times(w1, w2);
}
template<class Float>
inline double ConvertToCost(const LatticeWeightTpl<Float> &w) {
return static_cast<double>(w.Value1()) + static_cast<double>(w.Value2());
}
template<class Float, class Int>
inline double ConvertToCost(const CompactLatticeWeightTpl<LatticeWeightTpl<Float>, Int> &w) {
return static_cast<double>(w.Weight().Value1()) + static_cast<double>(w.Weight().Value2());
}
template<class Float>
inline double ConvertToCost(const TropicalWeightTpl<Float> &w) {
return w.Value();
}
} // namespace fst
#endif // KALDI_FSTEXT_LATTICE_WEIGHT_H_