hmm-utils.cc
54.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
// hmm/hmm-utils.cc
// Copyright 2009-2011 Microsoft Corporation
// 2018 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "hmm/hmm-utils.h"
#include "fst/fstlib.h"
#include "fstext/fstext-lib.h"
#include "fstext/grammar-context-fst.h"
namespace kaldi {
fst::VectorFst<fst::StdArc> *GetHmmAsFsa(
std::vector<int32> phone_window,
const ContextDependencyInterface &ctx_dep,
const TransitionModel &trans_model,
const HTransducerConfig &config,
HmmCacheType *cache) {
using namespace fst;
if (static_cast<int32>(phone_window.size()) != ctx_dep.ContextWidth())
KALDI_ERR << "Context size mismatch, ilabel-info [from context FST is "
<< phone_window.size() << ", context-dependency object "
"expects " << ctx_dep.ContextWidth();
int P = ctx_dep.CentralPosition();
int32 phone = phone_window[P];
if (phone == 0)
KALDI_ERR << "phone == 0. Some mismatch happened, or there is "
"a code error.";
const HmmTopology &topo = trans_model.GetTopo();
const HmmTopology::TopologyEntry &entry = topo.TopologyForPhone(phone);
// vector of the pdfs, indexed by pdf-class (pdf-classes must start from zero
// and be contiguous).
std::vector<int32> pdfs(topo.NumPdfClasses(phone));
for (int32 pdf_class = 0;
pdf_class < static_cast<int32>(pdfs.size());
pdf_class++) {
if (! ctx_dep.Compute(phone_window, pdf_class, &(pdfs[pdf_class])) ) {
std::ostringstream ctx_ss;
for (size_t i = 0; i < phone_window.size(); i++)
ctx_ss << phone_window[i] << ' ';
KALDI_ERR << "GetHmmAsFsa: context-dependency object could not produce "
<< "an answer: pdf-class = " << pdf_class << " ctx-window = "
<< ctx_ss.str() << ". This probably points "
"to either a coding error in some graph-building process, "
"a mismatch of topology with context-dependency object, the "
"wrong FST being passed on a command-line, or something of "
" that general nature.";
}
}
std::pair<int32, std::vector<int32> > cache_index(phone, pdfs);
if (cache != NULL) {
HmmCacheType::iterator iter = cache->find(cache_index);
if (iter != cache->end())
return iter->second;
}
VectorFst<StdArc> *ans = new VectorFst<StdArc>;
typedef StdArc Arc;
typedef Arc::Weight Weight;
typedef Arc::StateId StateId;
typedef Arc::Label Label;
std::vector<StateId> state_ids;
for (size_t i = 0; i < entry.size(); i++)
state_ids.push_back(ans->AddState());
KALDI_ASSERT(state_ids.size() != 0); // Or empty topology entry.
ans->SetStart(state_ids[0]);
StateId final = state_ids.back();
ans->SetFinal(final, Weight::One());
for (int32 hmm_state = 0;
hmm_state < static_cast<int32>(entry.size());
hmm_state++) {
int32 forward_pdf_class = entry[hmm_state].forward_pdf_class, forward_pdf;
int32 self_loop_pdf_class = entry[hmm_state].self_loop_pdf_class, self_loop_pdf;
if (forward_pdf_class == kNoPdf) { // nonemitting state.
forward_pdf = kNoPdf;
self_loop_pdf = kNoPdf;
} else {
KALDI_ASSERT(forward_pdf_class < static_cast<int32>(pdfs.size()));
KALDI_ASSERT(self_loop_pdf_class < static_cast<int32>(pdfs.size()));
forward_pdf = pdfs[forward_pdf_class];
self_loop_pdf = pdfs[self_loop_pdf_class];
}
int32 trans_idx;
for (trans_idx = 0;
trans_idx < static_cast<int32>(entry[hmm_state].transitions.size());
trans_idx++) {
BaseFloat log_prob;
Label label;
int32 dest_state = entry[hmm_state].transitions[trans_idx].first;
bool is_self_loop = (dest_state == hmm_state);
if (is_self_loop)
continue; // We will add self-loops in at a later stage of processing,
// not in this function.
if (forward_pdf_class == kNoPdf) {
// no pdf, hence non-estimated probability.
// [would not happen with normal topology] . There is no transition-state
// involved in this case.
log_prob = Log(entry[hmm_state].transitions[trans_idx].second);
label = 0;
} else { // normal probability.
int32 trans_state =
trans_model.TupleToTransitionState(phone, hmm_state, forward_pdf, self_loop_pdf);
int32 trans_id =
trans_model.PairToTransitionId(trans_state, trans_idx);
log_prob = trans_model.GetTransitionLogProbIgnoringSelfLoops(trans_id);
// log_prob is a negative number (or zero)...
label = trans_id;
}
// Will add probability-scale later (we may want to push first).
ans->AddArc(state_ids[hmm_state],
Arc(label, label, Weight(-log_prob), state_ids[dest_state]));
}
}
fst::RemoveEpsLocal(ans); // this is safe and will not blow up.
// Now apply probability scale.
// We waited till after the possible weight-pushing steps,
// because weight-pushing needs "real" weights in order to work.
ApplyProbabilityScale(config.transition_scale, ans);
if (cache != NULL)
(*cache)[cache_index] = ans;
return ans;
}
fst::VectorFst<fst::StdArc>*
GetHmmAsFsaSimple(std::vector<int32> phone_window,
const ContextDependencyInterface &ctx_dep,
const TransitionModel &trans_model,
BaseFloat prob_scale) {
using namespace fst;
if (static_cast<int32>(phone_window.size()) != ctx_dep.ContextWidth())
KALDI_ERR <<"Context size mismatch, ilabel-info [from context FST is "
<<(phone_window.size())<<", context-dependency object "
"expects "<<(ctx_dep.ContextWidth());
int P = ctx_dep.CentralPosition();
int32 phone = phone_window[P];
KALDI_ASSERT(phone != 0);
const HmmTopology &topo = trans_model.GetTopo();
const HmmTopology::TopologyEntry &entry = topo.TopologyForPhone(phone);
VectorFst<StdArc> *ans = new VectorFst<StdArc>;
// Create a mini-FST with a superfinal state [in case we have emitting
// final-states, which we usually will.]
typedef StdArc Arc;
typedef Arc::Weight Weight;
typedef Arc::StateId StateId;
typedef Arc::Label Label;
std::vector<StateId> state_ids;
for (size_t i = 0; i < entry.size(); i++)
state_ids.push_back(ans->AddState());
KALDI_ASSERT(state_ids.size() > 1); // Or invalid topology entry.
ans->SetStart(state_ids[0]);
StateId final = state_ids.back();
ans->SetFinal(final, Weight::One());
for (int32 hmm_state = 0;
hmm_state < static_cast<int32>(entry.size());
hmm_state++) {
int32 forward_pdf_class = entry[hmm_state].forward_pdf_class, forward_pdf;
int32 self_loop_pdf_class = entry[hmm_state].self_loop_pdf_class, self_loop_pdf;
if (forward_pdf_class == kNoPdf) { // nonemitting state; not generally used.
forward_pdf = kNoPdf;
self_loop_pdf = kNoPdf;
} else {
bool ans = ctx_dep.Compute(phone_window, forward_pdf_class, &forward_pdf);
KALDI_ASSERT(ans && "Context-dependency computation failed.");
ans = ctx_dep.Compute(phone_window, self_loop_pdf_class, &self_loop_pdf);
KALDI_ASSERT(ans && "Context-dependency computation failed.");
}
int32 trans_idx;
for (trans_idx = 0;
trans_idx < static_cast<int32>(entry[hmm_state].transitions.size());
trans_idx++) {
BaseFloat log_prob;
Label label;
int32 dest_state = entry[hmm_state].transitions[trans_idx].first;
if (forward_pdf_class == kNoPdf) {
// no pdf, hence non-estimated probability. very unusual case. [would
// not happen with normal topology] . There is no transition-state
// involved in this case.
KALDI_ASSERT(hmm_state != dest_state);
log_prob = Log(entry[hmm_state].transitions[trans_idx].second);
label = 0;
} else { // normal probability.
int32 trans_state =
trans_model.TupleToTransitionState(phone, hmm_state, forward_pdf, self_loop_pdf);
int32 trans_id =
trans_model.PairToTransitionId(trans_state, trans_idx);
log_prob = prob_scale * trans_model.GetTransitionLogProb(trans_id);
// log_prob is a negative number (or zero)...
label = trans_id;
}
ans->AddArc(state_ids[hmm_state],
Arc(label, label, Weight(-log_prob), state_ids[dest_state]));
}
}
return ans;
}
/// This utility function, used in GetHTransducer(), creates an FSA (finite
/// state acceptor, i.e. an FST with ilabels equal to olabels) with a single
/// successful path, with a single label on it.
static inline fst::VectorFst<fst::StdArc> *MakeTrivialAcceptor(int32 label) {
typedef fst::StdArc Arc;
typedef Arc::Weight Weight;
fst::VectorFst<Arc> *ans = new fst::VectorFst<Arc>;
ans->AddState();
ans->AddState();
ans->SetStart(0);
ans->SetFinal(1, Weight::One());
ans->AddArc(0, Arc(label, label, Weight::One(), 1));
return ans;
}
// The H transducer has a separate outgoing arc for each of the symbols in ilabel_info.
fst::VectorFst<fst::StdArc> *GetHTransducer(const std::vector<std::vector<int32> > &ilabel_info,
const ContextDependencyInterface &ctx_dep,
const TransitionModel &trans_model,
const HTransducerConfig &config,
std::vector<int32> *disambig_syms_left) {
KALDI_ASSERT(ilabel_info.size() >= 1 && ilabel_info[0].size() == 0); // make sure that eps == eps.
HmmCacheType cache;
// "cache" is an optimization that prevents GetHmmAsFsa repeating work
// unnecessarily.
using namespace fst;
typedef StdArc Arc;
typedef Arc::Weight Weight;
typedef Arc::StateId StateId;
typedef Arc::Label Label;
std::vector<const ExpandedFst<Arc>* > fsts(ilabel_info.size(), NULL);
std::vector<int32> phones = trans_model.GetPhones();
KALDI_ASSERT(disambig_syms_left != 0);
disambig_syms_left->clear();
int32 first_disambig_sym = trans_model.NumTransitionIds() + 1; // First disambig symbol we can have on the input side.
int32 next_disambig_sym = first_disambig_sym;
if (ilabel_info.size() > 0)
KALDI_ASSERT(ilabel_info[0].size() == 0); // make sure epsilon is epsilon...
for (int32 j = 1; j < static_cast<int32>(ilabel_info.size()); j++) { // zero is eps.
KALDI_ASSERT(!ilabel_info[j].empty());
if (ilabel_info[j][0] < 0 ||
(ilabel_info[j][0] == 0 && ilabel_info[j].size() == 1)) {
// disambig symbol or special symbol for grammar FSTs.
if (ilabel_info[j].size() == 1) {
// disambiguation symbol.
int32 disambig_sym_left = next_disambig_sym++;
disambig_syms_left->push_back(disambig_sym_left);
fsts[j] = MakeTrivialAcceptor(disambig_sym_left);
} else if (ilabel_info[j].size() == 2) {
if (config.nonterm_phones_offset <= 0) {
KALDI_ERR << "ilabel-info seems to be for grammar-FST. You need to "
"supply the --nonterm-phones-offset option.";
}
int32 nonterm_phones_offset = config.nonterm_phones_offset,
nonterminal = -ilabel_info[j][0],
left_context_phone = ilabel_info[j][1];
if (nonterminal <= nonterm_phones_offset ||
left_context_phone <= 0 ||
left_context_phone > nonterm_phones_offset) {
KALDI_ERR << "Could not interpret this ilabel-info with "
"--nonterm-phones-offset=" << nonterm_phones_offset
<< ": nonterminal,left-context-phone="
<< nonterminal << ',' << left_context_phone;
}
int32 big_number = static_cast<int32>(fst::kNontermBigNumber),
encoding_multiple = fst::GetEncodingMultiple(nonterm_phones_offset);
int32 encoded_symbol = big_number + nonterminal * encoding_multiple +
left_context_phone;
fsts[j] = MakeTrivialAcceptor(encoded_symbol);
} else {
KALDI_ERR << "Could not decode this ilabel_info entry.";
}
} else { // Real phone-in-context.
std::vector<int32> phone_window = ilabel_info[j];
VectorFst<Arc> *fst = GetHmmAsFsa(phone_window,
ctx_dep,
trans_model,
config,
&cache);
fsts[j] = fst;
}
}
VectorFst<Arc> *ans = MakeLoopFst(fsts);
SortAndUniq(&fsts); // remove duplicate pointers, which we will have
// in general, since we used the cache.
DeletePointers(&fsts);
return ans;
}
void GetIlabelMapping (const std::vector<std::vector<int32> > &ilabel_info_old,
const ContextDependencyInterface &ctx_dep,
const TransitionModel &trans_model,
std::vector<int32> *old2new_map) {
KALDI_ASSERT(old2new_map != NULL);
/// The next variable maps from the (central-phone, pdf-sequence) to
/// the index in ilabel_info_old corresponding to the first phone-in-context
/// that we saw for it. We use this to work
/// out the logical-to-physical mapping. Each time we handle a phone
/// in context, we see if its (central-phone, pdf-sequence) has already
/// been seen; if yes, we map to the original phone-sequence, if no,
/// we create a new "phyiscal-HMM" and there is no mapping.
std::map<std::pair<int32, std::vector<int32> >, int32 >
pair_to_physical;
int32 N = ctx_dep.ContextWidth(),
P = ctx_dep.CentralPosition();
int32 num_syms_old = ilabel_info_old.size();
/// old2old_map is a map from the old ilabels to themselves (but
/// duplicates are mapped to one unique one.
std::vector<int32> old2old_map(num_syms_old);
old2old_map[0] = 0;
for (int32 i = 1; i < num_syms_old; i++) {
const std::vector<int32> &vec = ilabel_info_old[i];
if (vec.size() == 1 && vec[0] <= 0) { // disambig.
old2old_map[i] = i;
} else {
KALDI_ASSERT(vec.size() == static_cast<size_t>(N));
// work out the vector of context-dependent phone
int32 central_phone = vec[P];
int32 num_pdf_classes = trans_model.GetTopo().NumPdfClasses(central_phone);
std::vector<int32> state_seq(num_pdf_classes); // Indexed by pdf-class
for (int32 pdf_class = 0; pdf_class < num_pdf_classes; pdf_class++) {
if (!ctx_dep.Compute(vec, pdf_class, &(state_seq[pdf_class]))) {
std::ostringstream ss;
WriteIntegerVector(ss, false, vec);
KALDI_ERR << "tree did not succeed in converting phone window "<<ss.str();
}
}
std::pair<int32, std::vector<int32> > pr(central_phone, state_seq);
std::map<std::pair<int32, std::vector<int32> >, int32 >::iterator iter
= pair_to_physical.find(pr);
if (iter == pair_to_physical.end()) { // first time we saw something like this.
pair_to_physical[pr] = i;
old2old_map[i] = i;
} else { // seen it before. look up in the map, the index we point to.
old2old_map[i] = iter->second;
}
}
}
std::vector<bool> seen(num_syms_old, false);
for (int32 i = 0; i < num_syms_old; i++)
seen[old2old_map[i]] = true;
// Now work out the elements of old2new_map corresponding to
// things that are first in their equivalence class. We're just
// compacting the labels to those for which seen[i] == true.
int32 cur_id = 0;
old2new_map->resize(num_syms_old);
for (int32 i = 0; i < num_syms_old; i++)
if (seen[i])
(*old2new_map)[i] = cur_id++;
// fill in the other elements of old2new_map.
for (int32 i = 0; i < num_syms_old; i++)
(*old2new_map)[i] = (*old2new_map)[old2old_map[i]];
}
fst::VectorFst<fst::StdArc> *GetPdfToTransitionIdTransducer(const TransitionModel &trans_model) {
using namespace fst;
VectorFst<StdArc> *ans = new VectorFst<StdArc>;
typedef VectorFst<StdArc>::Weight Weight;
typedef StdArc Arc;
ans->AddState();
ans->SetStart(0);
ans->SetFinal(0, Weight::One());
for (int32 tid = 1; tid <= trans_model.NumTransitionIds(); tid++) {
int32 pdf = trans_model.TransitionIdToPdf(tid);
ans->AddArc(0, Arc(pdf+1, tid, Weight::One(), 0)); // note the offset of 1 on the pdfs.
// it's because 0 is a valid pdf.
}
return ans;
}
class TidToTstateMapper {
public:
// Function object used in MakePrecedingInputSymbolsSameClass and
// MakeFollowingInputSymbolsSameClass (as called by AddSelfLoopsReorder and
// AddSelfLoopsNoReorder). It maps transition-ids to transition-states (and
// -1 to -1, 0 to 0 and disambiguation symbols to 0). If check_no_self_loops
// == true, it also checks that there are no self-loops in the graph (i.e. in
// the labels it is called with). This is just a convenient place to put this
// check.
// This maps valid transition-ids to transition states, maps kNoLabel to -1, and
// maps all other symbols (i.e. epsilon symbols, disambig symbols, and symbols
// with values over 100000/kNontermBigNumber) to zero.
// Its point is to provide an equivalence class on labels that's relevant to what
// the self-loop will be on the following (or preceding) state.
TidToTstateMapper(const TransitionModel &trans_model,
const std::vector<int32> &disambig_syms,
bool check_no_self_loops):
trans_model_(trans_model),
disambig_syms_(disambig_syms),
check_no_self_loops_(check_no_self_loops) { }
typedef int32 Result;
int32 operator() (int32 label) const {
if (label == static_cast<int32>(fst::kNoLabel)) return -1; // -1 -> -1
else if (label >= 1 && label <= trans_model_.NumTransitionIds()) {
if (check_no_self_loops_ && trans_model_.IsSelfLoop(label))
KALDI_ERR << "AddSelfLoops: graph already has self-loops.";
return trans_model_.TransitionIdToTransitionState(label);
} else { // 0 or (presumably) disambiguation symbol. Map to zero
int32 big_number = fst::kNontermBigNumber; // 1000000
if (label != 0 && label < big_number)
KALDI_ASSERT(std::binary_search(disambig_syms_.begin(),
disambig_syms_.end(),
label)); // or invalid label
return 0;
}
}
private:
const TransitionModel &trans_model_;
const std::vector<int32> &disambig_syms_; // sorted.
bool check_no_self_loops_;
};
// This is the code that expands an FST from transition-states to
// transition-ids, in the case where reorder == true, i.e. the non-optional
// transition is before the self-loop.
static void AddSelfLoopsReorder(const TransitionModel &trans_model,
const std::vector<int32> &disambig_syms,
BaseFloat self_loop_scale,
bool check_no_self_loops,
fst::VectorFst<fst::StdArc> *fst) {
using namespace fst;
typedef StdArc Arc;
typedef Arc::Label Label;
typedef Arc::StateId StateId;
typedef Arc::Weight Weight;
TidToTstateMapper f(trans_model, disambig_syms, check_no_self_loops);
// Duplicate states as necessary so that each state will require at most one
// self-loop to be added to it. Approximately this means that if a
// state has multiple different symbols on arcs entering it, it will be
// duplicated, with one copy per incoming symbol.
MakePrecedingInputSymbolsSameClass(true, fst, f);
int32 kNoTransState = f(kNoLabel);
KALDI_ASSERT(kNoTransState == -1);
// use the following to keep track of the transition-state for each state.
std::vector<int32> state_in(fst->NumStates(), kNoTransState);
// This first loop just works out the label into each state,
// and converts the transitions in the graph from transition-states
// to transition-ids.
for (StateIterator<VectorFst<Arc> > siter(*fst);
!siter.Done();
siter.Next()) {
StateId s = siter.Value();
for (MutableArcIterator<VectorFst<Arc> > aiter(fst, s);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
int32 trans_state = f(arc.ilabel);
if (state_in[arc.nextstate] == kNoTransState)
state_in[arc.nextstate] = trans_state;
else {
KALDI_ASSERT(state_in[arc.nextstate] == trans_state);
// or probably an error in MakePrecedingInputSymbolsSame.
}
}
}
KALDI_ASSERT(state_in[fst->Start()] == kNoStateId || state_in[fst->Start()] == 0);
// or MakePrecedingInputSymbolsSame failed.
// The next loop looks at each graph state, adds the self-loop [if needed] and
// multiples all the out-transitions' probs (and final-prob) by the
// forward-prob for that state (which is one minus self-loop-prob). We do it
// like this to maintain stochasticity (i.e. rather than multiplying the arcs
// with the corresponding labels on them by this probability).
for (StateId s = 0; s < static_cast<StateId>(state_in.size()); s++) {
if (state_in[s] > 0) { // defined, and not eps or a disambiguation symbol or a
// nonterminal-related sybol for grammar decoding...
int32 trans_state = static_cast<int32>(state_in[s]);
// First multiply all probabilities by "forward" probability.
BaseFloat log_prob = trans_model.GetNonSelfLoopLogProb(trans_state);
fst->SetFinal(s, Times(fst->Final(s), Weight(-log_prob*self_loop_scale)));
for (MutableArcIterator<MutableFst<Arc> > aiter(fst, s);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
arc.weight = Times(arc.weight, Weight(-log_prob*self_loop_scale));
aiter.SetValue(arc);
}
// Now add self-loop, if needed.
int32 trans_id = trans_model.SelfLoopOf(trans_state);
if (trans_id != 0) { // has self-loop.
BaseFloat log_prob = trans_model.GetTransitionLogProb(trans_id);
fst->AddArc(s, Arc(trans_id, 0, Weight(-log_prob*self_loop_scale), s));
}
}
}
}
// this is the code that expands an FST from transition-states to
// transition-ids, in the case where reorder == false, i.e. non-optional
// transition is after the self-loop.
static void AddSelfLoopsNoReorder(
const TransitionModel &trans_model,
const std::vector<int32> &disambig_syms,
BaseFloat self_loop_scale,
bool check_no_self_loops,
fst::VectorFst<fst::StdArc> *fst) {
using namespace fst;
typedef StdArc Arc;
typedef Arc::Label Label;
typedef Arc::StateId StateId;
typedef Arc::Weight Weight;
// Duplicate states as necessary so that each state has at most one self-loop
// on it.
TidToTstateMapper f(trans_model, disambig_syms, check_no_self_loops);
MakeFollowingInputSymbolsSameClass(true, fst, f);
StateId num_states = fst->NumStates();
for (StateId s = 0; s < num_states; s++) {
int32 my_trans_state = f(kNoLabel);
KALDI_ASSERT(my_trans_state == -1);
for (MutableArcIterator<VectorFst<Arc> > aiter(fst, s);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
if (my_trans_state == -1) my_trans_state = f(arc.ilabel);
else KALDI_ASSERT(my_trans_state == f(arc.ilabel)); // or MakeFollowingInputSymbolsSameClass failed.
if (my_trans_state > 0) { // transition-id; multiply weight...
BaseFloat log_prob = trans_model.GetNonSelfLoopLogProb(my_trans_state);
arc.weight = Times(arc.weight, Weight(-log_prob*self_loop_scale));
aiter.SetValue(arc);
}
}
if (fst->Final(s) != Weight::Zero()) {
KALDI_ASSERT(my_trans_state == kNoLabel || my_trans_state == 0); // or MakeFollowingInputSymbolsSameClass failed.
}
if (my_trans_state != kNoLabel && my_trans_state != 0) {
// a transition-state; add self-loop, if it has one.
int32 trans_id = trans_model.SelfLoopOf(my_trans_state);
if (trans_id != 0) { // has self-loop.
BaseFloat log_prob = trans_model.GetTransitionLogProb(trans_id);
fst->AddArc(s, Arc(trans_id, 0, Weight(-log_prob*self_loop_scale), s));
}
}
}
}
void AddSelfLoops(const TransitionModel &trans_model,
const std::vector<int32> &disambig_syms,
BaseFloat self_loop_scale,
bool reorder,
bool check_no_self_loops,
fst::VectorFst<fst::StdArc> *fst) {
KALDI_ASSERT(fst->Start() != fst::kNoStateId);
if (reorder)
AddSelfLoopsReorder(trans_model, disambig_syms, self_loop_scale,
check_no_self_loops, fst);
else
AddSelfLoopsNoReorder(trans_model, disambig_syms, self_loop_scale,
check_no_self_loops, fst);
}
// IsReordered returns true if the transitions were possibly reordered. This reordering
// can happen in AddSelfLoops, if the "reorder" option was true.
// This makes the out-transition occur before the self-loop transition.
// The function returns false (no reordering) if there is not enough information in
// the alignment to tell (i.e. no self-loop were taken), and in this case the calling
// code doesn't care what the answer is.
// The "alignment" vector contains a sequence of TransitionIds.
static bool IsReordered(const TransitionModel &trans_model,
const std::vector<int32> &alignment) {
for (size_t i = 0; i + 1 < alignment.size(); i++) {
int32 tstate1 = trans_model.TransitionIdToTransitionState(alignment[i]),
tstate2 = trans_model.TransitionIdToTransitionState(alignment[i+1]);
if (tstate1 != tstate2) {
bool is_loop_1 = trans_model.IsSelfLoop(alignment[i]),
is_loop_2 = trans_model.IsSelfLoop(alignment[i+1]);
KALDI_ASSERT(!(is_loop_1 && is_loop_2)); // Invalid.
if (is_loop_1) return true; // Reordered. self-loop is last.
if (is_loop_2) return false; // Not reordered. self-loop is first.
}
}
// Just one trans-state in whole sequence.
if (alignment.empty()) return false;
else {
bool is_loop_front = trans_model.IsSelfLoop(alignment.front()),
is_loop_back = trans_model.IsSelfLoop(alignment.back());
if (is_loop_front) return false; // Not reordered. Self-loop is first.
if (is_loop_back) return true; // Reordered. Self-loop is last.
return false; // We really don't know in this case but calling code should
// not care.
}
}
// SplitToPhonesInternal takes as input the "alignment" vector containing
// a sequence of transition-ids, and appends a single vector to
// "split_output" for each instance of a phone that occurs in the
// output.
// Returns true if the alignment passes some non-exhaustive consistency
// checks (if the input does not start at the start of a phone or does not
// end at the end of a phone, we should expect that false will be returned).
static bool SplitToPhonesInternal(const TransitionModel &trans_model,
const std::vector<int32> &alignment,
bool reordered,
std::vector<std::vector<int32> > *split_output) {
if (alignment.empty()) return true; // nothing to split.
std::vector<size_t> end_points; // points at which phones end [in an
// stl iterator sense, i.e. actually one past the last transition-id within
// each phone]..
bool was_ok = true;
for (size_t i = 0; i < alignment.size(); i++) {
int32 trans_id = alignment[i];
if (trans_model.IsFinal(trans_id)) { // is final-prob
if (!reordered) end_points.push_back(i+1);
else { // reordered.
while (i+1 < alignment.size() &&
trans_model.IsSelfLoop(alignment[i+1])) {
KALDI_ASSERT(trans_model.TransitionIdToTransitionState(alignment[i]) ==
trans_model.TransitionIdToTransitionState(alignment[i+1]));
i++;
}
end_points.push_back(i+1);
}
} else if (i+1 == alignment.size()) {
// need to have an end-point at the actual end.
// but this is an error- should have been detected already.
was_ok = false;
end_points.push_back(i+1);
} else {
int32 this_state = trans_model.TransitionIdToTransitionState(alignment[i]),
next_state = trans_model.TransitionIdToTransitionState(alignment[i+1]);
if (this_state == next_state) continue; // optimization.
int32 this_phone = trans_model.TransitionStateToPhone(this_state),
next_phone = trans_model.TransitionStateToPhone(next_state);
if (this_phone != next_phone) {
// The phone changed, but this is an error-- we should have detected this via the
// IsFinal check.
was_ok = false;
end_points.push_back(i+1);
}
}
}
size_t cur_point = 0;
for (size_t i = 0; i < end_points.size(); i++) {
split_output->push_back(std::vector<int32>());
// The next if-statement checks if the initial trans-id at the current end
// point is the initial-state of the current phone if that initial-state
// is emitting (a cursory check that the alignment is plausible).
int32 trans_state =
trans_model.TransitionIdToTransitionState(alignment[cur_point]);
int32 phone = trans_model.TransitionStateToPhone(trans_state);
int32 forward_pdf_class = trans_model.GetTopo().TopologyForPhone(phone)[0].forward_pdf_class;
if (forward_pdf_class != kNoPdf) // initial-state of the current phone is emitting
if (trans_model.TransitionStateToHmmState(trans_state) != 0)
was_ok = false;
for (size_t j = cur_point; j < end_points[i]; j++)
split_output->back().push_back(alignment[j]);
cur_point = end_points[i];
}
return was_ok;
}
bool SplitToPhones(const TransitionModel &trans_model,
const std::vector<int32> &alignment,
std::vector<std::vector<int32> > *split_alignment) {
KALDI_ASSERT(split_alignment != NULL);
split_alignment->clear();
bool is_reordered = IsReordered(trans_model, alignment);
return SplitToPhonesInternal(trans_model, alignment,
is_reordered, split_alignment);
}
/** This function is used internally inside ConvertAlignment;
it converts the alignment for a single phone. 'new_phone_window'
is the window of phones as required by the tree.
The size of 'new_phone_alignment' is the length requested, which
may not always equal 'old_phone_alignment' (in case the
'subsample' value is not 1).
*/
static inline void ConvertAlignmentForPhone(
const TransitionModel &old_trans_model,
const TransitionModel &new_trans_model,
const ContextDependencyInterface &new_ctx_dep,
const std::vector<int32> &old_phone_alignment,
const std::vector<int32> &new_phone_window,
bool old_is_reordered,
bool new_is_reordered,
std::vector<int32> *new_phone_alignment) {
int32 alignment_size = old_phone_alignment.size();
static bool warned_topology = false;
int32 P = new_ctx_dep.CentralPosition(),
old_central_phone = old_trans_model.TransitionIdToPhone(
old_phone_alignment[0]),
new_central_phone = new_phone_window[P];
const HmmTopology &old_topo = old_trans_model.GetTopo(),
&new_topo = new_trans_model.GetTopo();
bool topology_mismatch = !(old_topo.TopologyForPhone(old_central_phone) ==
new_topo.TopologyForPhone(new_central_phone));
if (topology_mismatch) {
if (!warned_topology) {
warned_topology = true;
KALDI_WARN << "Topology mismatch detected; automatically converting. "
<< "Won't warn again.";
}
}
bool length_mismatch =
(new_phone_alignment->size() != old_phone_alignment.size());
if (length_mismatch || topology_mismatch) {
// We generate a random path from this FST, ignoring the
// old alignment.
GetRandomAlignmentForPhone(new_ctx_dep, new_trans_model,
new_phone_window, new_phone_alignment);
if (new_is_reordered)
ChangeReorderingOfAlignment(new_trans_model, new_phone_alignment);
return;
}
KALDI_ASSERT(!old_phone_alignment.empty());
int32 new_num_pdf_classes = new_topo.NumPdfClasses(new_central_phone);
std::vector<int32> pdf_ids(new_num_pdf_classes); // Indexed by pdf-class
for (int32 pdf_class = 0; pdf_class < new_num_pdf_classes; pdf_class++) {
if (!new_ctx_dep.Compute(new_phone_window, pdf_class,
&(pdf_ids[pdf_class]))) {
std::ostringstream ss;
WriteIntegerVector(ss, false, new_phone_window);
KALDI_ERR << "tree did not succeed in converting phone window "
<< ss.str();
}
}
// the topologies and lengths match -> we can directly transfer
// the alignment.
for (int32 j = 0; j < alignment_size; j++) {
int32 old_tid = old_phone_alignment[j],
old_tstate = old_trans_model.TransitionIdToTransitionState(old_tid);
int32 forward_pdf_class =
old_trans_model.TransitionStateToForwardPdfClass(old_tstate),
self_loop_pdf_class =
old_trans_model.TransitionStateToSelfLoopPdfClass(old_tstate);
int32 hmm_state = old_trans_model.TransitionIdToHmmState(old_tid);
int32 trans_idx = old_trans_model.TransitionIdToTransitionIndex(old_tid);
int32 new_forward_pdf = pdf_ids[forward_pdf_class];
int32 new_self_loop_pdf = pdf_ids[self_loop_pdf_class];
int32 new_trans_state =
new_trans_model.TupleToTransitionState(new_central_phone, hmm_state,
new_forward_pdf, new_self_loop_pdf);
int32 new_tid =
new_trans_model.PairToTransitionId(new_trans_state, trans_idx);
(*new_phone_alignment)[j] = new_tid;
}
if (new_is_reordered != old_is_reordered)
ChangeReorderingOfAlignment(new_trans_model, new_phone_alignment);
}
/**
This function, called from ConvertAlignmentInternal(), works out suitable new
lengths of phones in the case where subsample_factor != 1. The input vectors
'mapped_phones' and 'old_lengths' must be the same size-- the length of the
phone sequence. The 'topology' object and 'mapped_phones' are needed to
work out the minimum length of each phone in the sequence.
Returns false only if it could not assign lengths (because the topology was
too long relative to the number of frames).
@param topology [in] The new phone lengths are computed with
regard to this topology
@param mapped_phones [in] The phones for which this function computes
new lengths
@param old_lengths [in] The old lengths
@param conversion_shift [in] This will normally equal subsample_factor - 1
but may be less than that if the 'repeat_frames'
option is true; it's used for generating
'frame-shifted' versions of alignments that
we will later interpolate. This helps us keep
the phone boundaries of the subsampled and
interpolated alignments the same as
the original alignment.
@param subsample_factor [in] The frame subsampling factor... normally 1, but
might be > 1 if we're converting to a
reduced-frame-rate system.
@param new_lengths [out] The vector for storing new lengths.
*/
static bool ComputeNewPhoneLengths(const HmmTopology &topology,
const std::vector<int32> &mapped_phones,
const std::vector<int32> &old_lengths,
int32 conversion_shift,
int32 subsample_factor,
std::vector<int32> *new_lengths) {
int32 phone_sequence_length = old_lengths.size();
std::vector<int32> min_lengths(phone_sequence_length);
new_lengths->resize(phone_sequence_length);
for (int32 i = 0; i < phone_sequence_length; i++)
min_lengths[i] = topology.MinLength(mapped_phones[i]);
int32 cur_time_elapsed = 0;
for (int32 i = 0; i < phone_sequence_length; i++) {
// Note: the '+ subsample_factor - 1' here is needed so that
// the subsampled alignments have the same length as features
// subsampled with 'subsample-feats'.
int32 subsampled_time =
(cur_time_elapsed + conversion_shift) / subsample_factor;
cur_time_elapsed += old_lengths[i];
int32 next_subsampled_time =
(cur_time_elapsed + conversion_shift) / subsample_factor;
(*new_lengths)[i] = next_subsampled_time - subsampled_time;
}
bool changed = true;
while (changed) {
changed = false;
for (int32 i = 0; i < phone_sequence_length; i++) {
if ((*new_lengths)[i] < min_lengths[i]) {
changed = true;
// we need at least one extra frame.. just try to get one frame for now.
// Get it from the left or the right, depending which one has the closest
// availability of a 'spare' frame.
int32 min_distance = std::numeric_limits<int32>::max(),
best_other_phone_index = -1,
cur_distance = 0;
// first try to the left.
for (int32 j = i - 1; j >= 0; j--) {
if ((*new_lengths)[j] > min_lengths[j]) {
min_distance = cur_distance;
best_other_phone_index = j;
break;
} else {
cur_distance += (*new_lengths)[j];
}
}
// .. now to the right.
cur_distance = 0;
for (int32 j = i + 1; j < phone_sequence_length; j++) {
if ((*new_lengths)[j] > min_lengths[j]) {
if (cur_distance < min_distance) {
min_distance = cur_distance;
best_other_phone_index = j;
}
break;
} else {
cur_distance += (*new_lengths)[j];
}
}
if (best_other_phone_index == -1)
return false;
// assign an extra frame to this phone...
(*new_lengths)[i]++;
// and borrow it from the place that we found.
(*new_lengths)[best_other_phone_index]--;
}
}
}
return true;
}
/**
This function is the same as 'ConvertAligment',
but instead of the 'repeat_frames' option it supports the 'conversion_shift'
option; see the documentation of ComputeNewPhoneLengths() for what
'conversion_shift' is for.
*/
static bool ConvertAlignmentInternal(const TransitionModel &old_trans_model,
const TransitionModel &new_trans_model,
const ContextDependencyInterface &new_ctx_dep,
const std::vector<int32> &old_alignment,
int32 conversion_shift,
int32 subsample_factor,
bool new_is_reordered,
const std::vector<int32> *phone_map,
std::vector<int32> *new_alignment) {
KALDI_ASSERT(0 <= conversion_shift && conversion_shift < subsample_factor);
bool old_is_reordered = IsReordered(old_trans_model, old_alignment);
KALDI_ASSERT(new_alignment != NULL);
new_alignment->clear();
new_alignment->reserve(old_alignment.size());
std::vector<std::vector<int32> > old_split; // split into phones.
if (!SplitToPhones(old_trans_model, old_alignment, &old_split))
return false;
int32 phone_sequence_length = old_split.size();
std::vector<int32> mapped_phones(phone_sequence_length);
for (size_t i = 0; i < phone_sequence_length; i++) {
KALDI_ASSERT(!old_split[i].empty());
mapped_phones[i] = old_trans_model.TransitionIdToPhone(old_split[i][0]);
if (phone_map != NULL) { // Map the phone sequence.
int32 sz = phone_map->size();
if (mapped_phones[i] < 0 || mapped_phones[i] >= sz ||
(*phone_map)[mapped_phones[i]] == -1)
KALDI_ERR << "ConvertAlignment: could not map phone " << mapped_phones[i];
mapped_phones[i] = (*phone_map)[mapped_phones[i]];
}
}
// the sizes of each element of 'new_split' indicate the length of alignment
// that we want for each phone in the new sequence.
std::vector<std::vector<int32> > new_split(phone_sequence_length);
if (subsample_factor == 1 &&
old_trans_model.GetTopo() == new_trans_model.GetTopo()) {
// we know the old phone lengths will be fine.
for (size_t i = 0; i < phone_sequence_length; i++)
new_split[i].resize(old_split[i].size());
} else {
// .. they may not be fine.
std::vector<int32> old_lengths(phone_sequence_length), new_lengths;
for (int32 i = 0; i < phone_sequence_length; i++)
old_lengths[i] = old_split[i].size();
if (!ComputeNewPhoneLengths(new_trans_model.GetTopo(),
mapped_phones, old_lengths, conversion_shift,
subsample_factor, &new_lengths)) {
KALDI_WARN << "Failed to produce suitable phone lengths";
return false;
}
for (int32 i = 0; i < phone_sequence_length; i++)
new_split[i].resize(new_lengths[i]);
}
int32 N = new_ctx_dep.ContextWidth(),
P = new_ctx_dep.CentralPosition();
// by starting at -N and going to phone_sequence_length + N, we're
// being generous and not bothering to work out the exact
// array bounds.
for (int32 win_start = -N;
win_start < static_cast<int32>(phone_sequence_length + N);
win_start++) { // start of a context window.
int32 central_pos = win_start + P;
if (static_cast<size_t>(central_pos) < phone_sequence_length) {
// i.e. if (central_pos >= 0 && central_pos < phone_sequence_length)
std::vector<int32> new_phone_window(N, 0);
for (int32 offset = 0; offset < N; offset++)
if (static_cast<size_t>(win_start+offset) < phone_sequence_length)
new_phone_window[offset] = mapped_phones[win_start+offset];
const std::vector<int32> &old_alignment_for_phone = old_split[central_pos];
std::vector<int32> &new_alignment_for_phone = new_split[central_pos];
ConvertAlignmentForPhone(old_trans_model, new_trans_model, new_ctx_dep,
old_alignment_for_phone, new_phone_window,
old_is_reordered, new_is_reordered,
&new_alignment_for_phone);
new_alignment->insert(new_alignment->end(),
new_alignment_for_phone.begin(),
new_alignment_for_phone.end());
}
}
KALDI_ASSERT(new_alignment->size() ==
(old_alignment.size() + conversion_shift)/subsample_factor);
return true;
}
bool ConvertAlignment(const TransitionModel &old_trans_model,
const TransitionModel &new_trans_model,
const ContextDependencyInterface &new_ctx_dep,
const std::vector<int32> &old_alignment,
int32 subsample_factor,
bool repeat_frames,
bool new_is_reordered,
const std::vector<int32> *phone_map,
std::vector<int32> *new_alignment) {
if (!repeat_frames || subsample_factor == 1) {
return ConvertAlignmentInternal(old_trans_model,
new_trans_model,
new_ctx_dep,
old_alignment,
subsample_factor - 1,
subsample_factor,
new_is_reordered,
phone_map,
new_alignment);
// The value "subsample_factor - 1" for conversion_shift above ensures the
// alignments have the same length as the output of 'subsample-feats'
} else {
std::vector<std::vector<int32> > shifted_alignments(subsample_factor);
for (int32 conversion_shift = subsample_factor - 1;
conversion_shift >= 0; conversion_shift--) {
if (!ConvertAlignmentInternal(old_trans_model,
new_trans_model,
new_ctx_dep,
old_alignment,
conversion_shift,
subsample_factor,
new_is_reordered,
phone_map,
&shifted_alignments[conversion_shift]))
return false;
}
KALDI_ASSERT(new_alignment != NULL);
new_alignment->clear();
new_alignment->reserve(old_alignment.size());
int32 max_shifted_ali_length = (old_alignment.size() / subsample_factor)
+ (old_alignment.size() % subsample_factor);
for (int32 i = 0; i < max_shifted_ali_length; i++)
for (int32 conversion_shift = subsample_factor - 1;
conversion_shift >= 0; conversion_shift--)
if (i < static_cast<int32>(shifted_alignments[conversion_shift].size()))
new_alignment->push_back(shifted_alignments[conversion_shift][i]);
}
KALDI_ASSERT(new_alignment->size() == old_alignment.size());
return true;
}
// Returns the scaled, but not negated, log-prob, with the given scaling factors.
static BaseFloat GetScaledTransitionLogProb(const TransitionModel &trans_model,
int32 trans_id,
BaseFloat transition_scale,
BaseFloat self_loop_scale) {
if (transition_scale == self_loop_scale) {
return trans_model.GetTransitionLogProb(trans_id) * transition_scale;
} else {
if (trans_model.IsSelfLoop(trans_id)) {
return self_loop_scale * trans_model.GetTransitionLogProb(trans_id);
} else {
int32 trans_state = trans_model.TransitionIdToTransitionState(trans_id);
return self_loop_scale * trans_model.GetNonSelfLoopLogProb(trans_state)
+ transition_scale * trans_model.GetTransitionLogProbIgnoringSelfLoops(trans_id);
// This could be simplified to
// (self_loop_scale - transition_scale) * trans_model.GetNonSelfLoopLogProb(trans_state)
// + trans_model.GetTransitionLogProb(trans_id);
// this simplifies if self_loop_scale == 0.0
}
}
}
void AddTransitionProbs(const TransitionModel &trans_model,
const std::vector<int32> &disambig_syms, // may be empty
BaseFloat transition_scale,
BaseFloat self_loop_scale,
fst::VectorFst<fst::StdArc> *fst) {
using namespace fst;
KALDI_ASSERT(IsSortedAndUniq(disambig_syms));
int num_tids = trans_model.NumTransitionIds();
for (StateIterator<VectorFst<StdArc> > siter(*fst);
!siter.Done();
siter.Next()) {
for (MutableArcIterator<VectorFst<StdArc> > aiter(fst, siter.Value());
!aiter.Done();
aiter.Next()) {
StdArc arc = aiter.Value();
StdArc::Label l = arc.ilabel;
if (l >= 1 && l <= num_tids) { // a transition-id.
BaseFloat scaled_log_prob = GetScaledTransitionLogProb(trans_model,
l,
transition_scale,
self_loop_scale);
arc.weight = Times(arc.weight, TropicalWeight(-scaled_log_prob));
} else if (l != 0) {
if (!std::binary_search(disambig_syms.begin(), disambig_syms.end(),
arc.ilabel))
KALDI_ERR << "AddTransitionProbs: invalid symbol " << arc.ilabel
<< " on graph input side.";
}
aiter.SetValue(arc);
}
}
}
void AddTransitionProbs(const TransitionModel &trans_model,
BaseFloat transition_scale,
BaseFloat self_loop_scale,
Lattice *lat) {
using namespace fst;
int num_tids = trans_model.NumTransitionIds();
for (fst::StateIterator<Lattice> siter(*lat);
!siter.Done();
siter.Next()) {
for (MutableArcIterator<Lattice> aiter(lat, siter.Value());
!aiter.Done();
aiter.Next()) {
LatticeArc arc = aiter.Value();
LatticeArc::Label l = arc.ilabel;
if (l >= 1 && l <= num_tids) { // a transition-id.
BaseFloat scaled_log_prob = GetScaledTransitionLogProb(trans_model,
l,
transition_scale,
self_loop_scale);
// cost is negated log prob.
arc.weight.SetValue1(arc.weight.Value1() - scaled_log_prob);
} else if (l != 0) {
KALDI_ERR << "AddTransitionProbs: invalid symbol " << arc.ilabel
<< " on lattice input side.";
}
aiter.SetValue(arc);
}
}
}
// This function takes a phone-sequence with word-start and word-end
// tokens in it, and a word-sequence, and outputs the pronunciations
// "prons"... the format of "prons" is, each element is a vector,
// where the first element is the word (or zero meaning no word, e.g.
// for optional silence introduced by the lexicon), and the remaining
// elements are the phones in the word's pronunciation.
// It returns false if it encounters a problem of some kind, e.g.
// if the phone-sequence doesn't seem to have the right number of
// words in it.
bool ConvertPhnxToProns(const std::vector<int32> &phnx,
const std::vector<int32> &words,
int32 word_start_sym,
int32 word_end_sym,
std::vector<std::vector<int32> > *prons) {
size_t i = 0, j = 0;
while (i < phnx.size()) {
if (phnx[i] == 0) return false; // zeros not valid here.
if (phnx[i] == word_start_sym) { // start a word...
std::vector<int32> pron;
if (j >= words.size()) return false; // no word left..
if (words[j] == 0) return false; // zero word disallowed.
pron.push_back(words[j++]);
i++;
while (i < phnx.size()) {
if (phnx[i] == 0) return false;
if (phnx[i] == word_start_sym) return false; // error.
if (phnx[i] == word_end_sym) { i++; break; }
pron.push_back(phnx[i]);
i++;
}
// check we did see the word-end symbol.
if (!(i > 0 && phnx[i-1] == word_end_sym))
return false;
prons->push_back(pron);
} else if (phnx[i] == word_end_sym) {
return false; // error.
} else {
// start a non-word sequence of phones (e.g. opt-sil).
std::vector<int32> pron;
pron.push_back(0); // 0 serves as the word-id.
while (i < phnx.size()) {
if (phnx[i] == 0) return false;
if (phnx[i] == word_start_sym) break;
if (phnx[i] == word_end_sym) return false; // error.
pron.push_back(phnx[i]);
i++;
}
prons->push_back(pron);
}
}
return (j == words.size());
}
void GetRandomAlignmentForPhone(const ContextDependencyInterface &ctx_dep,
const TransitionModel &trans_model,
const std::vector<int32> &phone_window,
std::vector<int32> *alignment) {
typedef fst::StdArc Arc;
int32 length = alignment->size();
BaseFloat prob_scale = 0.0;
fst::VectorFst<Arc> *fst = GetHmmAsFsaSimple(phone_window, ctx_dep,
trans_model, prob_scale);
fst::RmEpsilon(fst);
fst::VectorFst<Arc> length_constraint_fst;
{ // set up length_constraint_fst.
std::vector<int32> symbols;
bool include_epsilon = false;
// note: 'fst' is an acceptor so ilabels == olabels.
GetInputSymbols(*fst, include_epsilon, &symbols);
int32 cur_state = length_constraint_fst.AddState();
length_constraint_fst.SetStart(cur_state);
for (int32 i = 0; i < length; i++) {
int32 next_state = length_constraint_fst.AddState();
for (size_t j = 0; j < symbols.size(); j++) {
length_constraint_fst.AddArc(cur_state,
Arc(symbols[j], symbols[j],
fst::TropicalWeight::One(),
next_state));
}
cur_state = next_state;
}
length_constraint_fst.SetFinal(cur_state, fst::TropicalWeight::One());
}
fst::VectorFst<Arc> composed_fst;
fst::Compose(*fst, length_constraint_fst, &composed_fst);
fst::VectorFst<Arc> single_path_fst;
{ // randomly generate a single path.
fst::UniformArcSelector<Arc> selector;
fst::RandGenOptions<fst::UniformArcSelector<Arc> > randgen_opts(selector);
fst::RandGen(composed_fst, &single_path_fst, randgen_opts);
}
if (single_path_fst.NumStates() == 0) {
KALDI_ERR << "Error generating random alignment (wrong length?): "
<< "requested length is " << length << " versus min-length "
<< trans_model.GetTopo().MinLength(
phone_window[ctx_dep.CentralPosition()]);
}
std::vector<int32> symbol_sequence;
bool ans = fst::GetLinearSymbolSequence<Arc, int32>(
single_path_fst, &symbol_sequence, NULL, NULL);
KALDI_ASSERT(ans && symbol_sequence.size() == length);
symbol_sequence.swap(*alignment);
delete fst;
}
void ChangeReorderingOfAlignment(const TransitionModel &trans_model,
std::vector<int32> *alignment) {
int32 start_pos = 0, size = alignment->size();
while (start_pos != size) {
int32 start_tid = (*alignment)[start_pos];
int32 cur_tstate = trans_model.TransitionIdToTransitionState(start_tid);
bool start_is_self_loop = trans_model.IsSelfLoop(start_tid) ? 0 : 1;
int32 end_pos = start_pos + 1;
// If the first instance of this transition-state was a self-loop, then eat
// only non-self-loops of this state; if it was a non-self-loop, then eat
// only self-loops of this state. Imposing this condition on self-loops
// would only actually matter in the rare circumstances that phones can
// have length 1.
while (end_pos != size &&
trans_model.TransitionIdToTransitionState((*alignment)[end_pos]) ==
cur_tstate) {
bool this_is_self_loop = trans_model.IsSelfLoop((*alignment)[end_pos]);
if (!this_is_self_loop) {
if (start_is_self_loop) {
break; // stop before including this transition-id.
} else {
end_pos++;
break; // stop after including this transition-id.
}
}
end_pos++;
}
std::swap((*alignment)[start_pos], (*alignment)[end_pos - 1]);
start_pos = end_pos;
}
}
} // namespace kaldi