posterior.cc
19.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
// hmm/posterior.cc
// Copyright 2009-2011 Microsoft Corporation
// 2013-2014 Johns Hopkins University (author: Daniel Povey)
// 2014 Guoguo Chen
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "hmm/posterior.h"
#include "util/kaldi-table.h"
#include "util/stl-utils.h"
#include "matrix/kaldi-matrix.h"
namespace kaldi {
void WritePosterior(std::ostream &os, bool binary, const Posterior &post) {
if (binary) {
int32 sz = post.size();
WriteBasicType(os, binary, sz);
for (Posterior::const_iterator iter = post.begin(); iter != post.end(); ++iter) {
int32 sz2 = iter->size();
WriteBasicType(os, binary, sz2);
for (std::vector<std::pair<int32, BaseFloat> >::const_iterator
iter2 = iter->begin(); iter2 != iter->end(); ++iter2) {
WriteBasicType(os, binary, iter2->first);
WriteBasicType(os, binary, iter2->second);
}
}
} else { // In text-mode, choose a human-friendly, script-friendly format.
// format is [ 1235 0.6 12 0.4 ] [ 34 1.0 ] ...
// We could have used the same code as in the binary case above,
// but this would have resulted in less readable output.
for (Posterior::const_iterator iter = post.begin(); iter != post.end(); ++iter) {
os << "[ ";
for (std::vector<std::pair<int32, BaseFloat> >::const_iterator iter2=iter->begin();
iter2 != iter->end();
iter2++) {
os << iter2->first << ' ' << iter2->second << ' ';
}
os << "] ";
}
os << '\n'; // newline terminates the Posterior.
}
if (!os.good())
KALDI_ERR << "Output stream error writing Posterior.";
}
void ReadPosterior(std::istream &is, bool binary, Posterior *post) {
post->clear();
if (binary) {
int32 sz;
ReadBasicType(is, true, &sz);
if (sz < 0 || sz > 10000000)
KALDI_ERR << "Reading posterior: got negative or improbably large size"
<< sz;
post->resize(sz);
for (Posterior::iterator iter = post->begin(); iter != post->end(); ++iter) {
int32 sz2;
ReadBasicType(is, true, &sz2);
if (sz2 < 0)
KALDI_ERR << "Reading posteriors: got negative size";
iter->resize(sz2);
for (std::vector<std::pair<int32, BaseFloat> >::iterator iter2=iter->begin();
iter2 != iter->end();
iter2++) {
ReadBasicType(is, true, &(iter2->first));
ReadBasicType(is, true, &(iter2->second));
}
}
} else {
std::string line;
getline(is, line); // This will discard the \n, if present.
// The Posterior is terminated by a newlinhe.
if (is.fail())
KALDI_ERR << "holder of Posterior: error reading line " << (is.eof() ? "[eof]" : "");
std::istringstream line_is(line);
while (1) {
std::string str;
line_is >> std::ws; // eat up whitespace.
if (line_is.eof()) break;
line_is >> str;
if (str != "[") {
int32 str_int;
// if str is an integer, we can give a slightly more concrete suggestion
// of what might have gone wrong.
KALDI_ERR << "Reading Posterior object: expecting [, got '" << str
<< (ConvertStringToInteger(str, &str_int) ?
"': did you provide alignments instead of posteriors?" :
"'.");
}
std::vector<std::pair<int32, BaseFloat> > this_vec;
while (1) {
line_is >> std::ws;
if (line_is.peek() == ']') {
line_is.get();
break;
}
int32 i; BaseFloat p;
line_is >> i >> p;
if (line_is.fail())
KALDI_ERR << "Error reading Posterior object (could not get data after \"[\");";
this_vec.push_back(std::make_pair(i, p));
}
post->push_back(this_vec);
}
}
}
// static
bool PosteriorHolder::Write(std::ostream &os, bool binary, const T &t) {
InitKaldiOutputStream(os, binary); // Puts binary header if binary mode.
try {
WritePosterior(os, binary, t);
return true;
} catch(const std::exception &e) {
KALDI_WARN << "Exception caught writing table of posteriors. " << e.what();
return false; // Write failure.
}
}
bool PosteriorHolder::Read(std::istream &is) {
t_.clear();
bool is_binary;
if (!InitKaldiInputStream(is, &is_binary)) {
KALDI_WARN << "Reading Table object, failed reading binary header";
return false;
}
try {
ReadPosterior(is, is_binary, &t_);
return true;
} catch (std::exception &e) {
KALDI_WARN << "Exception caught reading table of posteriors. " << e.what();
t_.clear();
return false;
}
}
// static
bool GaussPostHolder::Write(std::ostream &os, bool binary, const T &t) {
InitKaldiOutputStream(os, binary); // Puts binary header if binary mode.
try {
// We don't bother making this a one-line format.
int32 sz = t.size();
WriteBasicType(os, binary, sz);
for (GaussPost::const_iterator iter = t.begin(); iter != t.end(); ++iter) {
int32 sz2 = iter->size();
WriteBasicType(os, binary, sz2);
for (std::vector<std::pair<int32, Vector<BaseFloat> > >::const_iterator iter2=iter->begin();
iter2 != iter->end();
iter2++) {
WriteBasicType(os, binary, iter2->first);
iter2->second.Write(os, binary);
}
}
if(!binary) os << '\n';
return os.good();
} catch (const std::exception &e) {
KALDI_WARN << "Exception caught writing table of posteriors. " << e.what();
return false; // Write failure.
}
}
bool GaussPostHolder::Read(std::istream &is) {
t_.clear();
bool is_binary;
if (!InitKaldiInputStream(is, &is_binary)) {
KALDI_WARN << "Reading Table object, failed reading binary header";
return false;
}
try {
int32 sz;
ReadBasicType(is, is_binary, &sz);
if (sz < 0)
KALDI_ERR << "Reading posteriors: got negative size";
t_.resize(sz);
for (GaussPost::iterator iter = t_.begin(); iter != t_.end(); ++iter) {
int32 sz2;
ReadBasicType(is, is_binary, &sz2);
if (sz2 < 0)
KALDI_ERR << "Reading posteriors: got negative size";
iter->resize(sz2);
for (std::vector<std::pair<int32, Vector<BaseFloat> > >::iterator
iter2=iter->begin();
iter2 != iter->end();
iter2++) {
ReadBasicType(is, is_binary, &(iter2->first));
iter2->second.Read(is, is_binary);
}
}
return true;
} catch (std::exception &e) {
KALDI_WARN << "Exception caught reading table of posteriors. " << e.what();
t_.clear();
return false;
}
}
void ScalePosterior(BaseFloat scale, Posterior *post) {
if (scale == 1.0) return;
for (size_t i = 0; i < post->size(); i++) {
if (scale == 0.0) {
(*post)[i].clear();
} else {
for (size_t j = 0; j < (*post)[i].size(); j++)
(*post)[i][j].second *= scale;
}
}
}
BaseFloat TotalPosterior(const Posterior &post) {
double sum = 0.0;
size_t T = post.size();
for (size_t t = 0; t < T; t++) {
size_t I = post[t].size();
for (size_t i = 0; i < I; i++) {
sum += post[t][i].second;
}
}
return sum;
}
bool PosteriorEntriesAreDisjoint(
const std::vector<std::pair<int32,BaseFloat> > &post_elem1,
const std::vector<std::pair<int32,BaseFloat> > &post_elem2) {
unordered_set<int32> set1;
for (size_t i = 0; i < post_elem1.size(); i++) set1.insert(post_elem1[i].first);
for (size_t i = 0; i < post_elem2.size(); i++)
if (set1.count(post_elem2[i].first) != 0) return false;
return true; // The sets are disjoint.
}
// For each frame, merges the posteriors in post1 into post2,
// frame-by-frame, combining any duplicated entries.
// note: Posterior is vector<vector<pair<int32, BaseFloat> > >
// Returns the number of frames for which the two posteriors
// were disjoint (no common transition-ids or whatever index
// we are using).
int32 MergePosteriors(const Posterior &post1,
const Posterior &post2,
bool merge,
bool drop_frames,
Posterior *post) {
KALDI_ASSERT(post1.size() == post2.size()); // precondition.
post->resize(post1.size());
int32 num_disjoint = 0;
for (size_t i = 0; i < post->size(); i++) {
(*post)[i].reserve(post1[i].size() + post2[i].size());
(*post)[i].insert((*post)[i].end(),
post1[i].begin(), post1[i].end());
(*post)[i].insert((*post)[i].end(),
post2[i].begin(), post2[i].end());
if (merge) { // combine and sum up entries with same transition-id.
MergePairVectorSumming(&((*post)[i])); // This sorts on
// the transition-id merges the entries with the same
// key (i.e. same .first element; same transition-id), and
// gets rid of entries with zero .second element.
} else { // just to keep them pretty, merge them.
std::sort( (*post)[i].begin(), (*post)[i].end() );
}
if (PosteriorEntriesAreDisjoint(post1[i], post2[i])) {
num_disjoint++;
if (drop_frames)
(*post)[i].clear();
}
}
return num_disjoint;
}
void AlignmentToPosterior(const std::vector<int32> &ali,
Posterior *post) {
post->clear();
post->resize(ali.size());
for (size_t i = 0; i < ali.size(); i++) {
(*post)[i].resize(1);
(*post)[i][0].first = ali[i];
(*post)[i][0].second = 1.0;
}
}
struct ComparePosteriorByPdfs {
const TransitionModel *tmodel_;
ComparePosteriorByPdfs(const TransitionModel &tmodel): tmodel_(&tmodel) {}
bool operator() (const std::pair<int32, BaseFloat> &a,
const std::pair<int32, BaseFloat> &b) {
if (tmodel_->TransitionIdToPdf(a.first)
< tmodel_->TransitionIdToPdf(b.first))
return true;
else
return false;
}
};
void SortPosteriorByPdfs(const TransitionModel &tmodel,
Posterior *post) {
ComparePosteriorByPdfs compare(tmodel);
for (size_t i = 0; i < post->size(); i++) {
sort((*post)[i].begin(), (*post)[i].end(), compare);
}
}
void ConvertPosteriorToPdfs(const TransitionModel &tmodel,
const Posterior &post_in,
Posterior *post_out) {
post_out->clear();
post_out->resize(post_in.size());
for (size_t i = 0; i < post_out->size(); i++) {
unordered_map<int32, BaseFloat> pdf_to_post;
for (size_t j = 0; j < post_in[i].size(); j++) {
int32 tid = post_in[i][j].first,
pdf_id = tmodel.TransitionIdToPdf(tid);
BaseFloat post = post_in[i][j].second;
if (pdf_to_post.count(pdf_id) == 0)
pdf_to_post[pdf_id] = post;
else
pdf_to_post[pdf_id] += post;
}
(*post_out)[i].reserve(pdf_to_post.size());
for (unordered_map<int32, BaseFloat>::const_iterator iter =
pdf_to_post.begin(); iter != pdf_to_post.end(); ++iter) {
if (iter->second != 0.0)
(*post_out)[i].push_back(
std::make_pair(iter->first, iter->second));
}
}
}
void ConvertPosteriorToPhones(const TransitionModel &tmodel,
const Posterior &post_in,
Posterior *post_out) {
post_out->clear();
post_out->resize(post_in.size());
for (size_t i = 0; i < post_out->size(); i++) {
std::map<int32, BaseFloat> phone_to_post;
for (size_t j = 0; j < post_in[i].size(); j++) {
int32 tid = post_in[i][j].first,
phone_id = tmodel.TransitionIdToPhone(tid);
BaseFloat post = post_in[i][j].second;
if (phone_to_post.count(phone_id) == 0)
phone_to_post[phone_id] = post;
else
phone_to_post[phone_id] += post;
}
(*post_out)[i].reserve(phone_to_post.size());
for (std::map<int32, BaseFloat>::const_iterator iter =
phone_to_post.begin(); iter != phone_to_post.end(); ++iter) {
if (iter->second != 0.0)
(*post_out)[i].push_back(
std::make_pair(iter->first, iter->second));
}
}
}
void WeightSilencePost(const TransitionModel &trans_model,
const ConstIntegerSet<int32> &silence_set,
BaseFloat silence_scale,
Posterior *post) {
for (size_t i = 0; i < post->size(); i++) {
std::vector<std::pair<int32, BaseFloat> > this_post;
this_post.reserve((*post)[i].size());
for (size_t j = 0; j < (*post)[i].size(); j++) {
int32 tid = (*post)[i][j].first,
phone = trans_model.TransitionIdToPhone(tid);
BaseFloat weight = (*post)[i][j].second;
if (silence_set.count(phone) != 0) { // is a silence.
if (silence_scale != 0.0)
this_post.push_back(std::make_pair(tid, weight*silence_scale));
} else {
this_post.push_back(std::make_pair(tid, weight));
}
}
(*post)[i].swap(this_post);
}
}
void WeightSilencePostDistributed(const TransitionModel &trans_model,
const ConstIntegerSet<int32> &silence_set,
BaseFloat silence_scale,
Posterior *post) {
for (size_t i = 0; i < post->size(); i++) {
std::vector<std::pair<int32, BaseFloat> > this_post;
this_post.reserve((*post)[i].size());
BaseFloat sil_weight = 0.0, nonsil_weight = 0.0;
for (size_t j = 0; j < (*post)[i].size(); j++) {
int32 tid = (*post)[i][j].first,
phone = trans_model.TransitionIdToPhone(tid);
BaseFloat weight = (*post)[i][j].second;
if (silence_set.count(phone) != 0) sil_weight += weight;
else nonsil_weight += weight;
}
KALDI_ASSERT(sil_weight >= 0.0 && nonsil_weight >= 0.0); // This "distributed"
// weighting approach doesn't make sense if we have negative weights.
if (sil_weight + nonsil_weight == 0.0) continue;
BaseFloat frame_scale = (sil_weight * silence_scale + nonsil_weight) /
(sil_weight + nonsil_weight);
if (frame_scale != 0.0) {
for (size_t j = 0; j < (*post)[i].size(); j++) {
int32 tid = (*post)[i][j].first;
BaseFloat weight = (*post)[i][j].second;
this_post.push_back(std::make_pair(tid, weight * frame_scale));
}
}
(*post)[i].swap(this_post);
}
}
inline static BaseFloat GetTotalPosterior(
const std::vector<std::pair<int32, BaseFloat> > &post_entry) {
BaseFloat tot = 0.0;
std::vector<std::pair<int32, BaseFloat> >::const_iterator
iter = post_entry.begin(), end = post_entry.end();
for (; iter != end; ++iter) {
tot += iter->second;
}
return tot;
}
BaseFloat VectorToPosteriorEntry(
const VectorBase<BaseFloat> &log_likes,
int32 num_gselect,
BaseFloat min_post,
std::vector<std::pair<int32, BaseFloat> > *post_entry) {
KALDI_ASSERT(num_gselect > 0 && min_post >= 0 && min_post < 1.0);
// we name num_gauss assuming each entry in log_likes represents a Gaussian;
// it doesn't matter if they don't.
int32 num_gauss = log_likes.Dim();
KALDI_ASSERT(num_gauss > 0);
if (num_gselect > num_gauss)
num_gselect = num_gauss;
std::vector<std::pair<int32, BaseFloat> > temp_post;
BaseFloat max_like = log_likes.Max();
if (min_post != 0.0) {
BaseFloat like_cutoff = max_like + Log(min_post);
for (int32 g = 0; g < num_gauss; g++) {
BaseFloat like = log_likes(g);
if (like > like_cutoff) {
BaseFloat post = exp(like - max_like);
temp_post.push_back(std::pair<int32, BaseFloat>(g, post));
}
}
}
if (temp_post.empty()) {
// we reach here if min_post was 0.0 or if no posteriors reached the
// threshold min_post (we need at least one).
temp_post.resize(num_gauss);
for (int32 g = 0; g < num_gauss; g++)
temp_post[g] = std::pair<int32, BaseFloat>(g, Exp(log_likes(g) - max_like));
}
CompareReverseSecond compare;
if (static_cast<int32>(temp_post.size()) > num_gselect * 2) {
// Sort in decreasing order on posterior. For efficiency we
// first do nth_element and then sort, as we only need the part we're
// going to output, to be sorted.
std::nth_element(temp_post.begin(),
temp_post.begin() + num_gselect, temp_post.end(),
compare);
std::sort(temp_post.begin(), temp_post.begin() + num_gselect,
compare);
} else {
std::sort(temp_post.begin(), temp_post.end(), compare);
}
size_t num_to_insert = std::min<size_t>(temp_post.size(),
num_gselect);
post_entry->clear();
post_entry->insert(post_entry->end(),
temp_post.begin(), temp_post.begin() + num_to_insert);
BaseFloat tot_post = GetTotalPosterior(*post_entry),
cutoff = min_post * tot_post;
while (post_entry->size() > 1 && post_entry->back().second < cutoff) {
tot_post -= post_entry->back().second;
post_entry->pop_back();
}
// Now renormalize to sum to one after pruning.
BaseFloat inv_tot = 1.0 / tot_post;
auto end = post_entry->end();
for (auto iter = post_entry->begin(); iter != end; ++iter)
iter->second *= inv_tot;
return max_like + log(tot_post);
}
template <typename Real>
void PosteriorToMatrix(const Posterior &post,
const int32 post_dim, Matrix<Real> *mat) {
// Make a host-matrix,
int32 num_rows = post.size();
mat->Resize(num_rows, post_dim, kSetZero); // zero-filled
// Fill from Posterior,
for (int32 t = 0; t < post.size(); t++) {
for (int32 i = 0; i < post[t].size(); i++) {
int32 col = post[t][i].first;
if (col >= post_dim) {
KALDI_ERR << "Out-of-bound Posterior element with index " << col
<< ", higher than number of columns " << post_dim;
}
(*mat)(t, col) = post[t][i].second;
}
}
}
// instantiate the template function,
template void PosteriorToMatrix<float>(const Posterior &post,
const int32 post_dim,
Matrix<float> *mat);
template void PosteriorToMatrix<double>(const Posterior &post,
const int32 post_dim,
Matrix<double> *mat);
template <typename Real>
void PosteriorToPdfMatrix(const Posterior &post,
const TransitionModel &model,
Matrix<Real> *mat) {
// Allocate the matrix,
int32 num_rows = post.size(),
num_cols = model.NumPdfs();
mat->Resize(num_rows, num_cols, kSetZero); // zero-filled,
// Fill from Posterior,
for (int32 t = 0; t < post.size(); t++) {
for (int32 i = 0; i < post[t].size(); i++) {
int32 col = model.TransitionIdToPdf(post[t][i].first);
if (col >= num_cols) {
KALDI_ERR << "Out-of-bound Posterior element with index " << col
<< ", higher than number of columns " << num_cols;
}
(*mat)(t, col) += post[t][i].second; // sum,
}
}
}
// instantiate the template function,
template void PosteriorToPdfMatrix<float>(const Posterior &post,
const TransitionModel &model,
Matrix<float> *mat);
template void PosteriorToPdfMatrix<double>(const Posterior &post,
const TransitionModel &model,
Matrix<double> *mat);
} // End namespace kaldi