transition-model.cc
38.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
// hmm/transition-model.cc
// Copyright 2009-2012 Microsoft Corporation Johns Hopkins University (Author: Daniel Povey)
// Johns Hopkins University (author: Guoguo Chen)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "hmm/transition-model.h"
#include "tree/context-dep.h"
namespace kaldi {
void TransitionModel::ComputeTuples(const ContextDependencyInterface &ctx_dep) {
if (IsHmm())
ComputeTuplesIsHmm(ctx_dep);
else
ComputeTuplesNotHmm(ctx_dep);
// now tuples_ is populated with all possible tuples of (phone, hmm_state, pdf, self_loop_pdf).
std::sort(tuples_.begin(), tuples_.end()); // sort to enable reverse lookup.
// this sorting defines the transition-ids.
}
void TransitionModel::ComputeTuplesIsHmm(const ContextDependencyInterface &ctx_dep) {
const std::vector<int32> &phones = topo_.GetPhones();
KALDI_ASSERT(!phones.empty());
// this is the case for normal models. but not for chain models
std::vector<std::vector<std::pair<int32, int32> > > pdf_info;
std::vector<int32> num_pdf_classes( 1 + *std::max_element(phones.begin(), phones.end()), -1);
for (size_t i = 0; i < phones.size(); i++)
num_pdf_classes[phones[i]] = topo_.NumPdfClasses(phones[i]);
ctx_dep.GetPdfInfo(phones, num_pdf_classes, &pdf_info);
// pdf_info is list indexed by pdf of which (phone, pdf_class) it
// can correspond to.
std::map<std::pair<int32, int32>, std::vector<int32> > to_hmm_state_list;
// to_hmm_state_list is a map from (phone, pdf_class) to the list
// of hmm-states in the HMM for that phone that that (phone, pdf-class)
// can correspond to.
for (size_t i = 0; i < phones.size(); i++) { // setting up to_hmm_state_list.
int32 phone = phones[i];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(phone);
for (int32 j = 0; j < static_cast<int32>(entry.size()); j++) { // for each state...
int32 pdf_class = entry[j].forward_pdf_class;
if (pdf_class != kNoPdf) {
to_hmm_state_list[std::make_pair(phone, pdf_class)].push_back(j);
}
}
}
for (int32 pdf = 0; pdf < static_cast<int32>(pdf_info.size()); pdf++) {
for (size_t j = 0; j < pdf_info[pdf].size(); j++) {
int32 phone = pdf_info[pdf][j].first,
pdf_class = pdf_info[pdf][j].second;
const std::vector<int32> &state_vec = to_hmm_state_list[std::make_pair(phone, pdf_class)];
KALDI_ASSERT(!state_vec.empty());
// state_vec is a list of the possible HMM-states that emit this
// pdf_class.
for (size_t k = 0; k < state_vec.size(); k++) {
int32 hmm_state = state_vec[k];
tuples_.push_back(Tuple(phone, hmm_state, pdf, pdf));
}
}
}
}
void TransitionModel::ComputeTuplesNotHmm(const ContextDependencyInterface &ctx_dep) {
const std::vector<int32> &phones = topo_.GetPhones();
KALDI_ASSERT(!phones.empty());
// pdf_info is a set of lists indexed by phone. Each list is indexed by
// (pdf-class, self-loop pdf-class) of each state of that phone, and the element
// is a list of possible (pdf, self-loop pdf) pairs that (pdf-class, self-loop pdf-class)
// pair generates.
std::vector<std::vector<std::vector<std::pair<int32, int32> > > > pdf_info;
// pdf_class_pairs is a set of lists indexed by phone. Each list stores
// (pdf-class, self-loop pdf-class) of each state of that phone.
std::vector<std::vector<std::pair<int32, int32> > > pdf_class_pairs;
pdf_class_pairs.resize(1 + *std::max_element(phones.begin(), phones.end()));
for (size_t i = 0; i < phones.size(); i++) {
int32 phone = phones[i];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(phone);
for (int32 j = 0; j < static_cast<int32>(entry.size()); j++) { // for each state...
int32 forward_pdf_class = entry[j].forward_pdf_class, self_loop_pdf_class = entry[j].self_loop_pdf_class;
if (forward_pdf_class != kNoPdf)
pdf_class_pairs[phone].push_back(std::make_pair(forward_pdf_class, self_loop_pdf_class));
}
}
ctx_dep.GetPdfInfo(phones, pdf_class_pairs, &pdf_info);
std::vector<std::map<std::pair<int32, int32>, std::vector<int32> > > to_hmm_state_list;
to_hmm_state_list.resize(1 + *std::max_element(phones.begin(), phones.end()));
// to_hmm_state_list is a phone-indexed set of maps from (pdf-class, self-loop pdf_class) to the list
// of hmm-states in the HMM for that phone that that (pdf-class, self-loop pdf-class)
// can correspond to.
for (size_t i = 0; i < phones.size(); i++) { // setting up to_hmm_state_list.
int32 phone = phones[i];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(phone);
std::map<std::pair<int32, int32>, std::vector<int32> > phone_to_hmm_state_list;
for (int32 j = 0; j < static_cast<int32>(entry.size()); j++) { // for each state...
int32 forward_pdf_class = entry[j].forward_pdf_class, self_loop_pdf_class = entry[j].self_loop_pdf_class;
if (forward_pdf_class != kNoPdf) {
phone_to_hmm_state_list[std::make_pair(forward_pdf_class, self_loop_pdf_class)].push_back(j);
}
}
to_hmm_state_list[phone] = phone_to_hmm_state_list;
}
for (int32 i = 0; i < phones.size(); i++) {
int32 phone = phones[i];
for (int32 j = 0; j < static_cast<int32>(pdf_info[phone].size()); j++) {
int32 pdf_class = pdf_class_pairs[phone][j].first,
self_loop_pdf_class = pdf_class_pairs[phone][j].second;
const std::vector<int32> &state_vec =
to_hmm_state_list[phone][std::make_pair(pdf_class, self_loop_pdf_class)];
KALDI_ASSERT(!state_vec.empty());
for (size_t k = 0; k < state_vec.size(); k++) {
int32 hmm_state = state_vec[k];
for (size_t m = 0; m < pdf_info[phone][j].size(); m++) {
int32 pdf = pdf_info[phone][j][m].first,
self_loop_pdf = pdf_info[phone][j][m].second;
tuples_.push_back(Tuple(phone, hmm_state, pdf, self_loop_pdf));
}
}
}
}
}
void TransitionModel::ComputeDerived() {
state2id_.resize(tuples_.size()+2); // indexed by transition-state, which
// is one based, but also an entry for one past end of list.
int32 cur_transition_id = 1;
num_pdfs_ = 0;
for (int32 tstate = 1;
tstate <= static_cast<int32>(tuples_.size()+1); // not a typo.
tstate++) {
state2id_[tstate] = cur_transition_id;
if (static_cast<size_t>(tstate) <= tuples_.size()) {
int32 phone = tuples_[tstate-1].phone,
hmm_state = tuples_[tstate-1].hmm_state,
forward_pdf = tuples_[tstate-1].forward_pdf,
self_loop_pdf = tuples_[tstate-1].self_loop_pdf;
num_pdfs_ = std::max(num_pdfs_, 1 + forward_pdf);
num_pdfs_ = std::max(num_pdfs_, 1 + self_loop_pdf);
const HmmTopology::HmmState &state = topo_.TopologyForPhone(phone)[hmm_state];
int32 my_num_ids = static_cast<int32>(state.transitions.size());
cur_transition_id += my_num_ids; // # trans out of this state.
}
}
id2state_.resize(cur_transition_id); // cur_transition_id is #transition-ids+1.
id2pdf_id_.resize(cur_transition_id);
for (int32 tstate = 1; tstate <= static_cast<int32>(tuples_.size()); tstate++) {
for (int32 tid = state2id_[tstate]; tid < state2id_[tstate+1]; tid++) {
id2state_[tid] = tstate;
if (IsSelfLoop(tid))
id2pdf_id_[tid] = tuples_[tstate-1].self_loop_pdf;
else
id2pdf_id_[tid] = tuples_[tstate-1].forward_pdf;
}
}
// The following statements put copies a large number in the region of memory
// past the end of the id2pdf_id_ array, while leaving the array as it was
// before. The goal of this is to speed up decoding by disabling a check
// inside TransitionIdToPdf() that the transition-id was within the correct
// range.
int32 num_big_numbers = std::min<int32>(2000, cur_transition_id);
id2pdf_id_.resize(cur_transition_id + num_big_numbers,
std::numeric_limits<int32>::max());
id2pdf_id_.resize(cur_transition_id);
}
void TransitionModel::InitializeProbs() {
log_probs_.Resize(NumTransitionIds()+1); // one-based array, zeroth element empty.
for (int32 trans_id = 1; trans_id <= NumTransitionIds(); trans_id++) {
int32 trans_state = id2state_[trans_id];
int32 trans_index = trans_id - state2id_[trans_state];
const Tuple &tuple = tuples_[trans_state-1];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(tuple.phone);
KALDI_ASSERT(static_cast<size_t>(tuple.hmm_state) < entry.size());
BaseFloat prob = entry[tuple.hmm_state].transitions[trans_index].second;
if (prob <= 0.0)
KALDI_ERR << "TransitionModel::InitializeProbs, zero "
"probability [should remove that entry in the topology]";
if (prob > 1.0)
KALDI_WARN << "TransitionModel::InitializeProbs, prob greater than one.";
log_probs_(trans_id) = Log(prob);
}
ComputeDerivedOfProbs();
}
void TransitionModel::Check() const {
KALDI_ASSERT(NumTransitionIds() != 0 && NumTransitionStates() != 0);
{
int32 sum = 0;
for (int32 ts = 1; ts <= NumTransitionStates(); ts++) sum += NumTransitionIndices(ts);
KALDI_ASSERT(sum == NumTransitionIds());
}
for (int32 tid = 1; tid <= NumTransitionIds(); tid++) {
int32 tstate = TransitionIdToTransitionState(tid),
index = TransitionIdToTransitionIndex(tid);
KALDI_ASSERT(tstate > 0 && tstate <=NumTransitionStates() && index >= 0);
KALDI_ASSERT(tid == PairToTransitionId(tstate, index));
int32 phone = TransitionStateToPhone(tstate),
hmm_state = TransitionStateToHmmState(tstate),
forward_pdf = TransitionStateToForwardPdf(tstate),
self_loop_pdf = TransitionStateToSelfLoopPdf(tstate);
KALDI_ASSERT(tstate == TupleToTransitionState(phone, hmm_state, forward_pdf, self_loop_pdf));
KALDI_ASSERT(log_probs_(tid) <= 0.0 && log_probs_(tid) - log_probs_(tid) == 0.0);
// checking finite and non-positive (and not out-of-bounds).
}
}
bool TransitionModel::IsHmm() const {
const std::vector<int32> &phones = topo_.GetPhones();
KALDI_ASSERT(!phones.empty());
for (size_t i = 0; i < phones.size(); i++) {
int32 phone = phones[i];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(phone);
for (int32 j = 0; j < static_cast<int32>(entry.size()); j++) { // for each state...
if (entry[j].forward_pdf_class != entry[j].self_loop_pdf_class)
return false;
}
}
return true;
}
TransitionModel::TransitionModel(const ContextDependencyInterface &ctx_dep,
const HmmTopology &hmm_topo): topo_(hmm_topo) {
// First thing is to get all possible tuples.
ComputeTuples(ctx_dep);
ComputeDerived();
InitializeProbs();
Check();
}
int32 TransitionModel::TupleToTransitionState(int32 phone, int32 hmm_state, int32 pdf, int32 self_loop_pdf) const {
Tuple tuple(phone, hmm_state, pdf, self_loop_pdf);
// Note: if this ever gets too expensive, which is unlikely, we can refactor
// this code to sort first on pdf, and then index on pdf, so those
// that have the same pdf are in a contiguous range.
std::vector<Tuple>::const_iterator iter =
std::lower_bound(tuples_.begin(), tuples_.end(), tuple);
if (iter == tuples_.end() || !(*iter == tuple)) {
KALDI_ERR << "TransitionModel::TupleToTransitionState, tuple not found."
<< " (incompatible tree and model?)";
}
// tuples_ is indexed by transition_state-1, so add one.
return static_cast<int32>((iter - tuples_.begin())) + 1;
}
int32 TransitionModel::NumTransitionIndices(int32 trans_state) const {
KALDI_ASSERT(static_cast<size_t>(trans_state) <= tuples_.size());
return static_cast<int32>(state2id_[trans_state+1]-state2id_[trans_state]);
}
int32 TransitionModel::TransitionIdToTransitionState(int32 trans_id) const {
KALDI_ASSERT(trans_id != 0 && static_cast<size_t>(trans_id) < id2state_.size());
return id2state_[trans_id];
}
int32 TransitionModel::TransitionIdToTransitionIndex(int32 trans_id) const {
KALDI_ASSERT(trans_id != 0 && static_cast<size_t>(trans_id) < id2state_.size());
return trans_id - state2id_[id2state_[trans_id]];
}
int32 TransitionModel::TransitionStateToPhone(int32 trans_state) const {
KALDI_ASSERT(static_cast<size_t>(trans_state) <= tuples_.size());
return tuples_[trans_state-1].phone;
}
int32 TransitionModel::TransitionStateToForwardPdf(int32 trans_state) const {
KALDI_ASSERT(static_cast<size_t>(trans_state) <= tuples_.size());
return tuples_[trans_state-1].forward_pdf;
}
int32 TransitionModel::TransitionStateToForwardPdfClass(
int32 trans_state) const {
KALDI_ASSERT(static_cast<size_t>(trans_state) <= tuples_.size());
const Tuple &t = tuples_[trans_state-1];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(t.phone);
KALDI_ASSERT(static_cast<size_t>(t.hmm_state) < entry.size());
return entry[t.hmm_state].forward_pdf_class;
}
int32 TransitionModel::TransitionStateToSelfLoopPdfClass(
int32 trans_state) const {
KALDI_ASSERT(static_cast<size_t>(trans_state) <= tuples_.size());
const Tuple &t = tuples_[trans_state-1];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(t.phone);
KALDI_ASSERT(static_cast<size_t>(t.hmm_state) < entry.size());
return entry[t.hmm_state].self_loop_pdf_class;
}
int32 TransitionModel::TransitionStateToSelfLoopPdf(int32 trans_state) const {
KALDI_ASSERT(static_cast<size_t>(trans_state) <= tuples_.size());
return tuples_[trans_state-1].self_loop_pdf;
}
int32 TransitionModel::TransitionStateToHmmState(int32 trans_state) const {
KALDI_ASSERT(static_cast<size_t>(trans_state) <= tuples_.size());
return tuples_[trans_state-1].hmm_state;
}
int32 TransitionModel::PairToTransitionId(int32 trans_state, int32 trans_index) const {
KALDI_ASSERT(static_cast<size_t>(trans_state) <= tuples_.size());
KALDI_ASSERT(trans_index < state2id_[trans_state+1] - state2id_[trans_state]);
return state2id_[trans_state] + trans_index;
}
int32 TransitionModel::NumPhones() const {
int32 num_trans_state = tuples_.size();
int32 max_phone_id = 0;
for (int32 i = 0; i < num_trans_state; ++i) {
if (tuples_[i].phone > max_phone_id)
max_phone_id = tuples_[i].phone;
}
return max_phone_id;
}
bool TransitionModel::IsFinal(int32 trans_id) const {
KALDI_ASSERT(static_cast<size_t>(trans_id) < id2state_.size());
int32 trans_state = id2state_[trans_id];
int32 trans_index = trans_id - state2id_[trans_state];
const Tuple &tuple = tuples_[trans_state-1];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(tuple.phone);
KALDI_ASSERT(static_cast<size_t>(tuple.hmm_state) < entry.size());
KALDI_ASSERT(static_cast<size_t>(tuple.hmm_state) < entry.size());
KALDI_ASSERT(static_cast<size_t>(trans_index) <
entry[tuple.hmm_state].transitions.size());
// return true if the transition goes to the final state of the
// topology entry.
return (entry[tuple.hmm_state].transitions[trans_index].first + 1 ==
static_cast<int32>(entry.size()));
}
int32 TransitionModel::SelfLoopOf(int32 trans_state) const { // returns the self-loop transition-id,
KALDI_ASSERT(static_cast<size_t>(trans_state-1) < tuples_.size());
const Tuple &tuple = tuples_[trans_state-1];
// or zero if does not exist.
int32 phone = tuple.phone, hmm_state = tuple.hmm_state;
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(phone);
KALDI_ASSERT(static_cast<size_t>(hmm_state) < entry.size());
for (int32 trans_index = 0;
trans_index < static_cast<int32>(entry[hmm_state].transitions.size());
trans_index++)
if (entry[hmm_state].transitions[trans_index].first == hmm_state)
return PairToTransitionId(trans_state, trans_index);
return 0; // invalid transition id.
}
void TransitionModel::ComputeDerivedOfProbs() {
non_self_loop_log_probs_.Resize(NumTransitionStates()+1); // this array indexed
// by transition-state with nothing in zeroth element.
for (int32 tstate = 1; tstate <= NumTransitionStates(); tstate++) {
int32 tid = SelfLoopOf(tstate);
if (tid == 0) { // no self-loop
non_self_loop_log_probs_(tstate) = 0.0; // log(1.0)
} else {
BaseFloat self_loop_prob = Exp(GetTransitionLogProb(tid)),
non_self_loop_prob = 1.0 - self_loop_prob;
if (non_self_loop_prob <= 0.0) {
KALDI_WARN << "ComputeDerivedOfProbs(): non-self-loop prob is " << non_self_loop_prob;
non_self_loop_prob = 1.0e-10; // just so we can continue...
}
non_self_loop_log_probs_(tstate) = Log(non_self_loop_prob); // will be negative.
}
}
}
void TransitionModel::Read(std::istream &is, bool binary) {
ExpectToken(is, binary, "<TransitionModel>");
topo_.Read(is, binary);
std::string token;
ReadToken(is, binary, &token);
int32 size;
ReadBasicType(is, binary, &size);
tuples_.resize(size);
for (int32 i = 0; i < size; i++) {
ReadBasicType(is, binary, &(tuples_[i].phone));
ReadBasicType(is, binary, &(tuples_[i].hmm_state));
ReadBasicType(is, binary, &(tuples_[i].forward_pdf));
if (token == "<Tuples>")
ReadBasicType(is, binary, &(tuples_[i].self_loop_pdf));
else if (token == "<Triples>")
tuples_[i].self_loop_pdf = tuples_[i].forward_pdf;
}
ReadToken(is, binary, &token);
KALDI_ASSERT(token == "</Triples>" || token == "</Tuples>");
ComputeDerived();
ExpectToken(is, binary, "<LogProbs>");
log_probs_.Read(is, binary);
ExpectToken(is, binary, "</LogProbs>");
ExpectToken(is, binary, "</TransitionModel>");
ComputeDerivedOfProbs();
Check();
}
void TransitionModel::Write(std::ostream &os, bool binary) const {
bool is_hmm = IsHmm();
WriteToken(os, binary, "<TransitionModel>");
if (!binary) os << "\n";
topo_.Write(os, binary);
if (is_hmm)
WriteToken(os, binary, "<Triples>");
else
WriteToken(os, binary, "<Tuples>");
WriteBasicType(os, binary, static_cast<int32>(tuples_.size()));
if (!binary) os << "\n";
for (int32 i = 0; i < static_cast<int32> (tuples_.size()); i++) {
WriteBasicType(os, binary, tuples_[i].phone);
WriteBasicType(os, binary, tuples_[i].hmm_state);
WriteBasicType(os, binary, tuples_[i].forward_pdf);
if (!is_hmm)
WriteBasicType(os, binary, tuples_[i].self_loop_pdf);
if (!binary) os << "\n";
}
if (is_hmm)
WriteToken(os, binary, "</Triples>");
else
WriteToken(os, binary, "</Tuples>");
if (!binary) os << "\n";
WriteToken(os, binary, "<LogProbs>");
if (!binary) os << "\n";
log_probs_.Write(os, binary);
WriteToken(os, binary, "</LogProbs>");
if (!binary) os << "\n";
WriteToken(os, binary, "</TransitionModel>");
if (!binary) os << "\n";
}
BaseFloat TransitionModel::GetTransitionProb(int32 trans_id) const {
return Exp(log_probs_(trans_id));
}
BaseFloat TransitionModel::GetTransitionLogProb(int32 trans_id) const {
return log_probs_(trans_id);
}
BaseFloat TransitionModel::GetNonSelfLoopLogProb(int32 trans_state) const {
KALDI_ASSERT(trans_state != 0);
return non_self_loop_log_probs_(trans_state);
}
BaseFloat TransitionModel::GetTransitionLogProbIgnoringSelfLoops(int32 trans_id) const {
KALDI_ASSERT(trans_id != 0);
KALDI_PARANOID_ASSERT(!IsSelfLoop(trans_id));
return log_probs_(trans_id) - GetNonSelfLoopLogProb(TransitionIdToTransitionState(trans_id));
}
// stats are counts/weights, indexed by transition-id.
void TransitionModel::MleUpdate(const Vector<double> &stats,
const MleTransitionUpdateConfig &cfg,
BaseFloat *objf_impr_out,
BaseFloat *count_out) {
if (cfg.share_for_pdfs) {
MleUpdateShared(stats, cfg, objf_impr_out, count_out);
return;
}
BaseFloat count_sum = 0.0, objf_impr_sum = 0.0;
int32 num_skipped = 0, num_floored = 0;
KALDI_ASSERT(stats.Dim() == NumTransitionIds()+1);
for (int32 tstate = 1; tstate <= NumTransitionStates(); tstate++) {
int32 n = NumTransitionIndices(tstate);
KALDI_ASSERT(n>=1);
if (n > 1) { // no point updating if only one transition...
Vector<double> counts(n);
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
counts(tidx) = stats(tid);
}
double tstate_tot = counts.Sum();
count_sum += tstate_tot;
if (tstate_tot < cfg.mincount) { num_skipped++; }
else {
Vector<BaseFloat> old_probs(n), new_probs(n);
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
old_probs(tidx) = new_probs(tidx) = GetTransitionProb(tid);
}
for (int32 tidx = 0; tidx < n; tidx++)
new_probs(tidx) = counts(tidx) / tstate_tot;
for (int32 i = 0; i < 3; i++) { // keep flooring+renormalizing for 3 times..
new_probs.Scale(1.0 / new_probs.Sum());
for (int32 tidx = 0; tidx < n; tidx++)
new_probs(tidx) = std::max(new_probs(tidx), cfg.floor);
}
// Compute objf change
for (int32 tidx = 0; tidx < n; tidx++) {
if (new_probs(tidx) == cfg.floor) num_floored++;
double objf_change = counts(tidx) * (Log(new_probs(tidx))
- Log(old_probs(tidx)));
objf_impr_sum += objf_change;
}
// Commit updated values.
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
log_probs_(tid) = Log(new_probs(tidx));
if (log_probs_(tid) - log_probs_(tid) != 0.0)
KALDI_ERR << "Log probs is inf or NaN: error in update or bad stats?";
}
}
}
}
KALDI_LOG << "TransitionModel::Update, objf change is "
<< (objf_impr_sum / count_sum) << " per frame over " << count_sum
<< " frames. ";
KALDI_LOG << num_floored << " probabilities floored, " << num_skipped
<< " out of " << NumTransitionStates() << " transition-states "
"skipped due to insuffient data (it is normal to have some skipped.)";
if (objf_impr_out) *objf_impr_out = objf_impr_sum;
if (count_out) *count_out = count_sum;
ComputeDerivedOfProbs();
}
// stats are counts/weights, indexed by transition-id.
void TransitionModel::MapUpdate(const Vector<double> &stats,
const MapTransitionUpdateConfig &cfg,
BaseFloat *objf_impr_out,
BaseFloat *count_out) {
KALDI_ASSERT(cfg.tau > 0.0);
if (cfg.share_for_pdfs) {
MapUpdateShared(stats, cfg, objf_impr_out, count_out);
return;
}
BaseFloat count_sum = 0.0, objf_impr_sum = 0.0;
KALDI_ASSERT(stats.Dim() == NumTransitionIds()+1);
for (int32 tstate = 1; tstate <= NumTransitionStates(); tstate++) {
int32 n = NumTransitionIndices(tstate);
KALDI_ASSERT(n>=1);
if (n > 1) { // no point updating if only one transition...
Vector<double> counts(n);
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
counts(tidx) = stats(tid);
}
double tstate_tot = counts.Sum();
count_sum += tstate_tot;
Vector<BaseFloat> old_probs(n), new_probs(n);
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
old_probs(tidx) = new_probs(tidx) = GetTransitionProb(tid);
}
for (int32 tidx = 0; tidx < n; tidx++)
new_probs(tidx) = (counts(tidx) + cfg.tau * old_probs(tidx)) /
(cfg.tau + tstate_tot);
// Compute objf change
for (int32 tidx = 0; tidx < n; tidx++) {
double objf_change = counts(tidx) * (Log(new_probs(tidx))
- Log(old_probs(tidx)));
objf_impr_sum += objf_change;
}
// Commit updated values.
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
log_probs_(tid) = Log(new_probs(tidx));
if (log_probs_(tid) - log_probs_(tid) != 0.0)
KALDI_ERR << "Log probs is inf or NaN: error in update or bad stats?";
}
}
}
KALDI_LOG << "Objf change is " << (objf_impr_sum / count_sum)
<< " per frame over " << count_sum
<< " frames.";
if (objf_impr_out) *objf_impr_out = objf_impr_sum;
if (count_out) *count_out = count_sum;
ComputeDerivedOfProbs();
}
/// This version of the Update() function is for if the user specifies
/// --share-for-pdfs=true. We share the transitions for all states that
/// share the same pdf.
void TransitionModel::MleUpdateShared(const Vector<double> &stats,
const MleTransitionUpdateConfig &cfg,
BaseFloat *objf_impr_out,
BaseFloat *count_out) {
KALDI_ASSERT(cfg.share_for_pdfs);
BaseFloat count_sum = 0.0, objf_impr_sum = 0.0;
int32 num_skipped = 0, num_floored = 0;
KALDI_ASSERT(stats.Dim() == NumTransitionIds()+1);
std::map<int32, std::set<int32> > pdf_to_tstate;
for (int32 tstate = 1; tstate <= NumTransitionStates(); tstate++) {
int32 pdf = TransitionStateToForwardPdf(tstate);
pdf_to_tstate[pdf].insert(tstate);
if (!IsHmm()) {
pdf = TransitionStateToSelfLoopPdf(tstate);
pdf_to_tstate[pdf].insert(tstate);
}
}
std::map<int32, std::set<int32> >::iterator map_iter;
for (map_iter = pdf_to_tstate.begin();
map_iter != pdf_to_tstate.end();
++map_iter) {
// map_iter->first is pdf-id... not needed.
const std::set<int32> &tstates = map_iter->second;
KALDI_ASSERT(!tstates.empty());
int32 one_tstate = *(tstates.begin());
int32 n = NumTransitionIndices(one_tstate);
KALDI_ASSERT(n >= 1);
if (n > 1) { // Only update if >1 transition...
Vector<double> counts(n);
for (std::set<int32>::const_iterator iter = tstates.begin();
iter != tstates.end();
++iter) {
int32 tstate = *iter;
if (NumTransitionIndices(tstate) != n)
KALDI_ERR << "Mismatch in #transition indices: you cannot "
"use the --share-for-pdfs option with this topology "
"and sharing scheme.";
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
counts(tidx) += stats(tid);
}
}
double pdf_tot = counts.Sum();
count_sum += pdf_tot;
if (pdf_tot < cfg.mincount) { num_skipped++; }
else {
// Note: when calculating objf improvement, we
// assume we previously had the same tying scheme so
// we can get the params from one_tstate and they're valid
// for all.
Vector<BaseFloat> old_probs(n), new_probs(n);
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(one_tstate, tidx);
old_probs(tidx) = new_probs(tidx) = GetTransitionProb(tid);
}
for (int32 tidx = 0; tidx < n; tidx++)
new_probs(tidx) = counts(tidx) / pdf_tot;
for (int32 i = 0; i < 3; i++) { // keep flooring+renormalizing for 3 times..
new_probs.Scale(1.0 / new_probs.Sum());
for (int32 tidx = 0; tidx < n; tidx++)
new_probs(tidx) = std::max(new_probs(tidx), cfg.floor);
}
// Compute objf change
for (int32 tidx = 0; tidx < n; tidx++) {
if (new_probs(tidx) == cfg.floor) num_floored++;
double objf_change = counts(tidx) * (Log(new_probs(tidx))
- Log(old_probs(tidx)));
objf_impr_sum += objf_change;
}
// Commit updated values.
for (std::set<int32>::const_iterator iter = tstates.begin();
iter != tstates.end();
++iter) {
int32 tstate = *iter;
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
log_probs_(tid) = Log(new_probs(tidx));
if (log_probs_(tid) - log_probs_(tid) != 0.0)
KALDI_ERR << "Log probs is inf or NaN: error in update or bad stats?";
}
}
}
}
}
KALDI_LOG << "Objf change is " << (objf_impr_sum / count_sum)
<< " per frame over " << count_sum << " frames; "
<< num_floored << " probabilities floored, "
<< num_skipped << " pdf-ids skipped due to insuffient data.";
if (objf_impr_out) *objf_impr_out = objf_impr_sum;
if (count_out) *count_out = count_sum;
ComputeDerivedOfProbs();
}
/// This version of the MapUpdate() function is for if the user specifies
/// --share-for-pdfs=true. We share the transitions for all states that
/// share the same pdf.
void TransitionModel::MapUpdateShared(const Vector<double> &stats,
const MapTransitionUpdateConfig &cfg,
BaseFloat *objf_impr_out,
BaseFloat *count_out) {
KALDI_ASSERT(cfg.share_for_pdfs);
BaseFloat count_sum = 0.0, objf_impr_sum = 0.0;
KALDI_ASSERT(stats.Dim() == NumTransitionIds()+1);
std::map<int32, std::set<int32> > pdf_to_tstate;
for (int32 tstate = 1; tstate <= NumTransitionStates(); tstate++) {
int32 pdf = TransitionStateToForwardPdf(tstate);
pdf_to_tstate[pdf].insert(tstate);
if (!IsHmm()) {
pdf = TransitionStateToSelfLoopPdf(tstate);
pdf_to_tstate[pdf].insert(tstate);
}
}
std::map<int32, std::set<int32> >::iterator map_iter;
for (map_iter = pdf_to_tstate.begin();
map_iter != pdf_to_tstate.end();
++map_iter) {
// map_iter->first is pdf-id... not needed.
const std::set<int32> &tstates = map_iter->second;
KALDI_ASSERT(!tstates.empty());
int32 one_tstate = *(tstates.begin());
int32 n = NumTransitionIndices(one_tstate);
KALDI_ASSERT(n >= 1);
if (n > 1) { // Only update if >1 transition...
Vector<double> counts(n);
for (std::set<int32>::const_iterator iter = tstates.begin();
iter != tstates.end();
++iter) {
int32 tstate = *iter;
if (NumTransitionIndices(tstate) != n)
KALDI_ERR << "Mismatch in #transition indices: you cannot "
"use the --share-for-pdfs option with this topology "
"and sharing scheme.";
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
counts(tidx) += stats(tid);
}
}
double pdf_tot = counts.Sum();
count_sum += pdf_tot;
// Note: when calculating objf improvement, we
// assume we previously had the same tying scheme so
// we can get the params from one_tstate and they're valid
// for all.
Vector<BaseFloat> old_probs(n), new_probs(n);
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(one_tstate, tidx);
old_probs(tidx) = new_probs(tidx) = GetTransitionProb(tid);
}
for (int32 tidx = 0; tidx < n; tidx++)
new_probs(tidx) = (counts(tidx) + old_probs(tidx) * cfg.tau) /
(pdf_tot + cfg.tau);
// Compute objf change
for (int32 tidx = 0; tidx < n; tidx++) {
double objf_change = counts(tidx) * (Log(new_probs(tidx))
- Log(old_probs(tidx)));
objf_impr_sum += objf_change;
}
// Commit updated values.
for (std::set<int32>::const_iterator iter = tstates.begin();
iter != tstates.end();
++iter) {
int32 tstate = *iter;
for (int32 tidx = 0; tidx < n; tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
log_probs_(tid) = Log(new_probs(tidx));
if (log_probs_(tid) - log_probs_(tid) != 0.0)
KALDI_ERR << "Log probs is inf or NaN: error in update or bad stats?";
}
}
}
}
KALDI_LOG << "Objf change is " << (objf_impr_sum / count_sum)
<< " per frame over " << count_sum
<< " frames.";
if (objf_impr_out) *objf_impr_out = objf_impr_sum;
if (count_out) *count_out = count_sum;
ComputeDerivedOfProbs();
}
int32 TransitionModel::TransitionIdToPhone(int32 trans_id) const {
KALDI_ASSERT(trans_id != 0 && static_cast<size_t>(trans_id) < id2state_.size());
int32 trans_state = id2state_[trans_id];
return tuples_[trans_state-1].phone;
}
int32 TransitionModel::TransitionIdToPdfClass(int32 trans_id) const {
KALDI_ASSERT(trans_id != 0 && static_cast<size_t>(trans_id) < id2state_.size());
int32 trans_state = id2state_[trans_id];
const Tuple &t = tuples_[trans_state-1];
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(t.phone);
KALDI_ASSERT(static_cast<size_t>(t.hmm_state) < entry.size());
if (IsSelfLoop(trans_id))
return entry[t.hmm_state].self_loop_pdf_class;
else
return entry[t.hmm_state].forward_pdf_class;
}
int32 TransitionModel::TransitionIdToHmmState(int32 trans_id) const {
KALDI_ASSERT(trans_id != 0 && static_cast<size_t>(trans_id) < id2state_.size());
int32 trans_state = id2state_[trans_id];
const Tuple &t = tuples_[trans_state-1];
return t.hmm_state;
}
void TransitionModel::Print(std::ostream &os,
const std::vector<std::string> &phone_names,
const Vector<double> *occs) {
if (occs != NULL)
KALDI_ASSERT(occs->Dim() == NumPdfs());
bool is_hmm = IsHmm();
for (int32 tstate = 1; tstate <= NumTransitionStates(); tstate++) {
const Tuple &tuple = tuples_[tstate-1];
KALDI_ASSERT(static_cast<size_t>(tuple.phone) < phone_names.size());
std::string phone_name = phone_names[tuple.phone];
os << "Transition-state " << tstate << ": phone = " << phone_name
<< " hmm-state = " << tuple.hmm_state;
if (is_hmm)
os << " pdf = " << tuple.forward_pdf << '\n';
else
os << " forward-pdf = " << tuple.forward_pdf << " self-loop-pdf = "
<< tuple.self_loop_pdf << '\n';
for (int32 tidx = 0; tidx < NumTransitionIndices(tstate); tidx++) {
int32 tid = PairToTransitionId(tstate, tidx);
BaseFloat p = GetTransitionProb(tid);
os << " Transition-id = " << tid << " p = " << p;
if (occs != NULL) {
if (IsSelfLoop(tid))
os << " count of pdf = " << (*occs)(tuple.self_loop_pdf);
else
os << " count of pdf = " << (*occs)(tuple.forward_pdf);
}
// now describe what it's a transition to.
if (IsSelfLoop(tid)) os << " [self-loop]\n";
else {
int32 hmm_state = tuple.hmm_state;
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(tuple.phone);
KALDI_ASSERT(static_cast<size_t>(hmm_state) < entry.size());
int32 next_hmm_state = entry[hmm_state].transitions[tidx].first;
KALDI_ASSERT(next_hmm_state != hmm_state);
os << " [" << hmm_state << " -> " << next_hmm_state << "]\n";
}
}
}
}
bool GetPdfsForPhones(const TransitionModel &trans_model,
const std::vector<int32> &phones,
std::vector<int32> *pdfs) {
KALDI_ASSERT(IsSortedAndUniq(phones));
KALDI_ASSERT(pdfs != NULL);
pdfs->clear();
for (int32 tstate = 1; tstate <= trans_model.NumTransitionStates(); tstate++) {
if (std::binary_search(phones.begin(), phones.end(),
trans_model.TransitionStateToPhone(tstate))) {
pdfs->push_back(trans_model.TransitionStateToForwardPdf(tstate));
pdfs->push_back(trans_model.TransitionStateToSelfLoopPdf(tstate));
}
}
SortAndUniq(pdfs);
for (int32 tstate = 1; tstate <= trans_model.NumTransitionStates(); tstate++)
if ((std::binary_search(pdfs->begin(), pdfs->end(),
trans_model.TransitionStateToForwardPdf(tstate)) ||
std::binary_search(pdfs->begin(), pdfs->end(),
trans_model.TransitionStateToSelfLoopPdf(tstate)))
&& !std::binary_search(phones.begin(), phones.end(),
trans_model.TransitionStateToPhone(tstate)))
return false;
return true;
}
bool GetPhonesForPdfs(const TransitionModel &trans_model,
const std::vector<int32> &pdfs,
std::vector<int32> *phones) {
KALDI_ASSERT(IsSortedAndUniq(pdfs));
KALDI_ASSERT(phones != NULL);
phones->clear();
for (int32 tstate = 1; tstate <= trans_model.NumTransitionStates(); tstate++) {
if (std::binary_search(pdfs.begin(), pdfs.end(),
trans_model.TransitionStateToForwardPdf(tstate)) ||
std::binary_search(pdfs.begin(), pdfs.end(),
trans_model.TransitionStateToSelfLoopPdf(tstate)))
phones->push_back(trans_model.TransitionStateToPhone(tstate));
}
SortAndUniq(phones);
for (int32 tstate = 1; tstate <= trans_model.NumTransitionStates(); tstate++)
if (std::binary_search(phones->begin(), phones->end(),
trans_model.TransitionStateToPhone(tstate))
&& !(std::binary_search(pdfs.begin(), pdfs.end(),
trans_model.TransitionStateToForwardPdf(tstate)) &&
std::binary_search(pdfs.begin(), pdfs.end(),
trans_model.TransitionStateToSelfLoopPdf(tstate))) )
return false;
return true;
}
bool TransitionModel::Compatible(const TransitionModel &other) const {
return (topo_ == other.topo_ && tuples_ == other.tuples_ &&
state2id_ == other.state2id_ && id2state_ == other.id2state_
&& num_pdfs_ == other.num_pdfs_);
}
bool TransitionModel::IsSelfLoop(int32 trans_id) const {
KALDI_ASSERT(static_cast<size_t>(trans_id) < id2state_.size());
int32 trans_state = id2state_[trans_id];
int32 trans_index = trans_id - state2id_[trans_state];
const Tuple &tuple = tuples_[trans_state-1];
int32 phone = tuple.phone, hmm_state = tuple.hmm_state;
const HmmTopology::TopologyEntry &entry = topo_.TopologyForPhone(phone);
KALDI_ASSERT(static_cast<size_t>(hmm_state) < entry.size());
return (static_cast<size_t>(trans_index) < entry[hmm_state].transitions.size()
&& entry[hmm_state].transitions[trans_index].first == hmm_state);
}
} // End namespace kaldi