ivector-extractor-test.cc
7.62 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// ivector/ivector-extractor-test.cc
// Copyright 2013 Daniel Povey
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "gmm/model-test-common.h"
#include "gmm/full-gmm-normal.h"
#include "ivector/ivector-extractor.h"
#include "util/kaldi-io.h"
namespace kaldi {
void TestIvectorExtractorIO(const IvectorExtractor &extractor) {
std::ostringstream ostr;
bool binary = (Rand() % 2 == 0);
extractor.Write(ostr, binary);
std::istringstream istr(ostr.str());
IvectorExtractor extractor2;
extractor2.Read(istr, binary);
std::ostringstream ostr2;
extractor2.Write(ostr2, binary);
KALDI_ASSERT(ostr.str() == ostr2.str());
}
void TestIvectorExtractorStatsIO(IvectorExtractorStats &stats) {
std::ostringstream ostr;
bool binary = (Rand() % 2 == 0);
stats.Write(ostr, binary);
std::istringstream istr(ostr.str());
IvectorExtractorStats stats2;
stats2.Read(istr, binary);
std::ostringstream ostr2;
stats2.Write(ostr2, binary);
if (binary) {
// this was failing in text mode, due to differences like
// 8.2244e+06 vs 8.22440e+06
KALDI_ASSERT(ostr.str() == ostr2.str());
}
{ // Test I/O of IvectorExtractorStats and that it works identically with the "add"
// mechanism. We only test this with binary == true; otherwise it's not
// identical due to limited precision.
std::ostringstream ostr;
bool binary = true;
stats.Write(ostr, binary);
IvectorExtractorStats stats2;
{
std::istringstream istr(ostr.str());
stats2.Read(istr, binary);
}
{
std::istringstream istr(ostr.str());
stats2.Read(istr, binary, true); // add to existing.
}
IvectorExtractorStats stats3(stats);
stats3.Add(stats);
std::ostringstream ostr2;
stats2.Write(ostr2, false);
std::ostringstream ostr3;
stats3.Write(ostr3, false);
//if (binary) {
// KALDI_ASSERT(ostr2.str() == ostr3.str());
//}
}
}
void TestIvectorExtraction(const IvectorExtractor &extractor,
const MatrixBase<BaseFloat> &feats,
const FullGmm &fgmm) {
if (extractor.IvectorDependentWeights())
return; // Nothing to do as online iVector estimator does not work in this
// case.
int32 num_frames = feats.NumRows(),
feat_dim = feats.NumCols(),
num_gauss = extractor.NumGauss(),
ivector_dim = extractor.IvectorDim();
Posterior post(num_frames);
double tot_log_like = 0.0;
for (int32 t = 0; t < num_frames; t++) {
SubVector<BaseFloat> frame(feats, t);
Vector<BaseFloat> posterior(fgmm.NumGauss(), kUndefined);
tot_log_like += fgmm.ComponentPosteriors(frame, &posterior);
for (int32 i = 0; i < posterior.Dim(); i++)
post[t].push_back(std::make_pair(i, posterior(i)));
}
// The zeroth and 1st-order stats are in "utt_stats".
IvectorExtractorUtteranceStats utt_stats(num_gauss, feat_dim,
false);
utt_stats.AccStats(feats, post);
OnlineIvectorEstimationStats online_stats(extractor.IvectorDim(),
extractor.PriorOffset(),
0.0);
for (int32 t = 0; t < num_frames; t++) {
online_stats.AccStats(extractor, feats.Row(t), post[t]);
}
Vector<double> ivector1(ivector_dim), ivector2(ivector_dim);
extractor.GetIvectorDistribution(utt_stats, &ivector1, NULL);
int32 num_cg_iters = -1; // for testing purposes, compute it exactly.
online_stats.GetIvector(num_cg_iters, &ivector2);
KALDI_LOG << "ivector1 = " << ivector1;
KALDI_LOG << "ivector2 = " << ivector2;
// objf change vs. default iVector. note, here I'm using objf
// and auxf pretty much interchangeably :-(
double objf_change2 = online_stats.ObjfChange(ivector2) *
utt_stats.NumFrames();
Vector<double> ivector_baseline(ivector_dim);
ivector_baseline(0) = extractor.PriorOffset();
double objf_change1 = extractor.GetAuxf(utt_stats, ivector1) -
extractor.GetAuxf(utt_stats, ivector_baseline);
KALDI_LOG << "objf_change1 = " << objf_change1
<< ", objf_change2 = " << objf_change2;
KALDI_ASSERT(ivector1.ApproxEqual(ivector2));
}
void UnitTestIvectorExtractor() {
FullGmm fgmm;
int32 dim = 5 + Rand() % 5, num_comp = 1 + Rand() % 5;
KALDI_LOG << "Num Gauss = " << num_comp;
unittest::InitRandFullGmm(dim, num_comp, &fgmm);
FullGmmNormal fgmm_normal(fgmm);
IvectorExtractorOptions ivector_opts;
ivector_opts.ivector_dim = dim + 5;
ivector_opts.use_weights = (Rand() % 2 == 0);
KALDI_LOG << "Feature dim is " << dim
<< ", ivector dim is " << ivector_opts.ivector_dim;
IvectorExtractor extractor(ivector_opts, fgmm);
TestIvectorExtractorIO(extractor);
IvectorExtractorStatsOptions stats_opts;
if (Rand() % 2 == 0) stats_opts.update_variances = false;
stats_opts.num_samples_for_weights = 100; // Improve accuracy
// of estimation, since we do it with relatively few utterances,
// and we're testing the convergence.
int32 num_utts = 1 + Rand() % 5;
std::vector<Matrix<BaseFloat> > all_feats(num_utts);
for (int32 utt = 0; utt < num_utts; utt++) {
int32 num_frames = 100 + Rand() % 200;
if (Rand() % 2 == 0) num_frames *= 10;
if (Rand() % 2 == 0) num_frames /= 1.0;
Matrix<BaseFloat> feats(num_frames, dim);
fgmm_normal.Rand(&feats);
feats.Swap(&all_feats[utt]);
}
int32 num_iters = 4;
double last_auxf_impr = 0.0, last_auxf = 0.0;
for (int32 iter = 0; iter < num_iters; iter++) {
IvectorExtractorStats stats(extractor, stats_opts);
for (int32 utt = 0; utt < num_utts; utt++) {
Matrix<BaseFloat> &feats = all_feats[utt];
stats.AccStatsForUtterance(extractor, feats, fgmm);
TestIvectorExtraction(extractor, feats, fgmm);
}
TestIvectorExtractorStatsIO(stats);
IvectorExtractorEstimationOptions estimation_opts;
estimation_opts.gaussian_min_count = dim + 5;
double auxf = stats.AuxfPerFrame(),
auxf_impr = stats.Update(estimation_opts, &extractor);
KALDI_LOG << "Iter " << iter << ", auxf per frame was " << auxf
<< ", improvement in this update "
<< "phase was " << auxf_impr;
if (iter > 0) {
double auxf_change = auxf - last_auxf;
KALDI_LOG << "Predicted auxf change from last update phase was "
<< last_auxf_impr << " versus observed change "
<< auxf_change;
double wiggle_room = (ivector_opts.use_weights ? 5.0e-05 : 1.0e-08);
// The weight update is (a) not exact, and (b) relies on sampling, [two
// separate issues], so it might not always improve. But with
// a large number of "weight samples", it's OK.
KALDI_ASSERT(auxf_change >= last_auxf_impr - wiggle_room);
}
last_auxf_impr = auxf_impr;
last_auxf = auxf;
}
std::cout << "********************************************************************************************\n";
}
}
int main() {
using namespace kaldi;
SetVerboseLevel(5);
for (int i = 0; i < 10; i++)
UnitTestIvectorExtractor();
std::cout << "Test OK.\n";
return 0;
}