kws-scoring.cc
15.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// kws/kws-scoring.cc
// Copyright (c) 2015, Johns Hopkins University (Yenda Trmal<jtrmal@gmail.com>)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <utility>
#include <vector>
#include <limits>
#include <algorithm>
#include "kws/kws-scoring.h"
namespace kaldi {
namespace kws_internal {
class KwTermLower {
public:
explicit KwTermLower(const int threshold): threshold_(threshold) {}
bool operator() (const KwsTerm &left, const KwsTerm &right) {
if ( (left.start_time() + threshold_) < right.start_time() ) {
return true;
} else {
return (left.end_time() + threshold_) < right.end_time();
}
}
private:
const int threshold_;
};
class KwTermEqual {
public:
KwTermEqual(const int max_distance, const KwsTerm &inst):
max_distance_(max_distance), inst_(inst) {}
bool operator() (const KwsTerm &left, const KwsTerm &right) {
bool ret = true;
ret &= (left.kw_id() == right.kw_id());
ret &= (left.utt_id() == right.utt_id());
float center_left = (left.start_time() + left.end_time())/2;
float center_right = (right.start_time() + right.end_time())/2;
// This was an old definition of the criterion "the hyp is within
// max_distance_ area from the ref". The positive thing about the
// definition is, that it allows binary search through the collection
// ret &= fabs(left.tbeg - right.tbeg) <= max_distance_;
// ret &= fabs(left.tend - right.tend) <= max_distance_;
// This is the newer definition -- should be equivalent to what F4DE uses
ret &= fabs(center_left - center_right) <= max_distance_;
return ret;
}
bool operator() (const KwsTerm &right) {
return (*this)(inst_, right);
}
private:
const int max_distance_;
const KwsTerm inst_;
};
struct KwScoreStats {
int32 nof_corr;
int32 nof_fa;
int32 nof_misses;
int32 nof_corr_ndet;
int32 nof_unseen;
int32 nof_targets;
KwScoreStats(): nof_corr(0),
nof_fa(0),
nof_misses(0),
nof_corr_ndet(0),
nof_unseen(0),
nof_targets(0) {}
};
struct ThrSweepStats {
int32 nof_corr;
int32 nof_fa;
ThrSweepStats(): nof_corr(0),
nof_fa(0) {}
};
typedef unordered_map <float, ThrSweepStats> SweepThresholdStats;
typedef unordered_map <std::string, KwScoreStats> KwStats;
typedef unordered_map <std::string, SweepThresholdStats> PerKwSweepStats;
} // namespace kws_internal
void KwsTermsAlignerOptions::Register(OptionsItf *opts) {
opts->Register("max_distance", &max_distance,
"Max distance on the ref and hyp centers "
"to be considered as a potential match");
}
KwsTermsAligner::KwsTermsAligner(const KwsTermsAlignerOptions &opts):
opts_(opts),
nof_refs_(0),
nof_hyps_(0) { }
KwsAlignment KwsTermsAligner::AlignTerms() {
KwsAlignment alignment;
used_ref_terms_.clear();
std::list<KwsTerm>::iterator it = hyps_.begin();
for (; it != hyps_.end(); ++it) {
AlignedTermsPair ref_hyp_pair;
ref_hyp_pair.hyp = *it;
ref_hyp_pair.aligner_score = -std::numeric_limits<float>::infinity();
int ref_idx = FindBestRefIndex(*it);
if (ref_idx >= 0) { // If found
int utt_id = it->utt_id();
std::string kw_id = it->kw_id();
ref_hyp_pair.ref = refs_[utt_id][kw_id][ref_idx];
used_ref_terms_[utt_id][kw_id][ref_idx] = true;
ref_hyp_pair.aligner_score = AlignerScore(ref_hyp_pair.ref,
ref_hyp_pair.hyp);
}
alignment.Add(ref_hyp_pair);
}
KALDI_LOG << "Alignment size before adding unseen: " << alignment.size();
// Finally, find the terms in ref which have not been seen in hyp
// and add them into the alignment
FillUnmatchedRefs(&alignment);
KALDI_LOG << "Alignment size after adding unseen: " << alignment.size();
return alignment;
}
void KwsTermsAligner::FillUnmatchedRefs(KwsAlignment *ali) {
// We have to traverse the whole ref_ structure and check
// against the used_ref_terms_ structure if the given ref term
// was already used or not. If not, we will add it to the alignment
typedef unordered_map<std::string, TermArray> KwList;
typedef KwList::iterator KwIndex;
typedef unordered_map<int, KwList >::iterator UttIndex;
for (UttIndex utt = refs_.begin(); utt != refs_.end(); ++utt) {
int utt_id = utt->first;
for (KwIndex kw = refs_[utt_id].begin(); kw != refs_[utt_id].end(); ++kw) {
std::string kw_id = kw->first;
for (TermIterator term = refs_[utt_id][kw_id].begin();
term != refs_[utt_id][kw_id].end(); ++term ) {
int idx = term - refs_[utt_id][kw_id].begin();
if (!used_ref_terms_[utt_id][kw_id][idx]) {
AlignedTermsPair missed_hyp;
missed_hyp.aligner_score = -std::numeric_limits<float>::infinity();
missed_hyp.ref = refs_[utt_id][kw_id][idx];
ali->Add(missed_hyp);
}
}
}
}
}
int KwsTermsAligner::FindBestRefIndex(const KwsTerm &term) {
if (!RefExistsMaybe(term)) {
return -1;
}
int utt_id = term.utt_id();
std::string kw_id = term.kw_id();
TermIterator start_mark = refs_[utt_id][kw_id].begin();
TermIterator end_mark = refs_[utt_id][kw_id].end();
TermIterator it = FindNextRef(term, start_mark, end_mark);
if (it == end_mark) {
return -1;
}
int best_ref_idx = -1;
float best_ref_score = -std::numeric_limits<float>::infinity();
do {
float current_score = AlignerScore(*it, term);
int current_index = it - start_mark;
if ((current_score > best_ref_score) &&
(!used_ref_terms_[utt_id][kw_id][current_index])) {
best_ref_idx = current_index;
best_ref_score = current_score;
}
it = FindNextRef(term, ++it, end_mark);
} while (it != end_mark);
return best_ref_idx;
}
bool KwsTermsAligner::RefExistsMaybe(const KwsTerm &term) {
int utt_id = term.utt_id();
std::string kw_id = term.kw_id();
if (refs_.count(utt_id) != 0) {
if (refs_[utt_id].count(kw_id) != 0) {
return true;
}
}
return false;
}
KwsTermsAligner::TermIterator KwsTermsAligner::FindNextRef(
const KwsTerm &ref,
const TermIterator &prev,
const TermIterator &last) {
return std::find_if(prev, last,
kws_internal::KwTermEqual(opts_.max_distance, ref));
}
float KwsTermsAligner::AlignerScore(const KwsTerm &ref, const KwsTerm &hyp) {
float overlap = std::min(ref.end_time(), hyp.end_time())
- std::max(ref.start_time(), hyp.start_time());
float join = std::max(ref.end_time(), hyp.end_time())
- std::min(ref.start_time(), hyp.start_time());
return static_cast<float>(overlap) / join;
}
void KwsAlignment::WriteCsv(std::iostream &os, const float frames_per_sec) {
AlignedTerms::const_iterator it = begin();
os << "language,file,channel,termid,term,ref_bt,ref_et,"
<< "sys_bt,sys_et,sys_score,sys_decision,alignment\n";
while ( it != end() ) {
int file = it->ref.valid() ? it->ref.utt_id() : it->hyp.utt_id();
std::string termid = it->ref.valid() ? it->ref.kw_id() : it->hyp.kw_id();
std::string term = termid;
std::string lang = "";
int channel = 1;
os << lang << ","
<< file << ","
<< channel << ","
<< termid << ","
<< term << ",";
if (it->ref.valid()) {
os << it->ref.start_time() / static_cast<float>(frames_per_sec) << ","
<< it->ref.end_time() / static_cast<float>(frames_per_sec) << ",";
} else {
os << "," << ",";
}
if (it->hyp.valid()) {
os << it->hyp.start_time() / static_cast<float>(frames_per_sec) << ","
<< it->hyp.end_time() / static_cast<float>(frames_per_sec) << ","
<< it->hyp.score() << ","
<< (it->hyp.score() >= 0.5 ? "YES" : "NO") << ",";
} else {
os << "," << "," << "," << ",";
}
if (it->ref.valid() && it->hyp.valid()) {
os << (it->hyp.score() >= 0.5 ? "CORR" : "MISS");
} else if (it->ref.valid()) {
os << "MISS";
} else if (it->hyp.valid()) {
os << (it->hyp.score() >= 0.5 ? "FA" : "CORR!DET");
}
os << std::endl;
it++;
}
}
TwvMetricsOptions::TwvMetricsOptions(): cost_fa(0.1f),
value_corr(1.0f),
prior_probability(1e-4f),
score_threshold(0.5f),
sweep_step(0.05f),
audio_duration(0.0f) {}
void TwvMetricsOptions::Register(OptionsItf *opts) {
opts->Register("cost-fa", &cost_fa,
"The cost of an incorrect detection");
opts->Register("value-corr", &value_corr,
"The value (gain) of a correct detection");
opts->Register("prior-kw-probability", &prior_probability,
"The prior probability of a keyword");
opts->Register("score-threshold", &score_threshold,
"The score threshold for computation of ATWV");
opts->Register("sweep-step", &sweep_step,
"Size of the bin during sweeping for the oracle measures");
// We won't set the audio duration here, as it's supposed to be
// a mandatory argument, not optional
}
class TwvMetricsStats {
public:
kws_internal::KwScoreStats global_keyword_stats;
kws_internal::KwStats keyword_stats;
kws_internal::PerKwSweepStats otwv_sweep_cache;
std::list<float> sweep_threshold_values;
};
TwvMetrics::TwvMetrics(const TwvMetricsOptions &opts):
audio_duration_(opts.audio_duration),
atwv_decision_threshold_(opts.score_threshold),
beta_(opts.beta()) {
stats_ = new TwvMetricsStats();
if (opts.sweep_step > 0.0) {
for (float i=0.0; i <= 1; i+=opts.sweep_step) {
stats_->sweep_threshold_values.push_back(i);
}
}
}
TwvMetrics::~TwvMetrics() {
delete stats_;
}
void TwvMetrics::AddEvent(const KwsTerm &ref,
const KwsTerm &hyp,
float ali_score) {
if (ref.valid() && hyp.valid()) {
RefAndHypSeen(hyp.kw_id(), hyp.score());
} else if (hyp.valid()) {
OnlyHypSeen(hyp.kw_id(), hyp.score());
} else if (ref.valid()) {
OnlyRefSeen(ref.kw_id(), ref.score());
} else {
KALDI_ASSERT(ref.valid() || hyp.valid());
}
}
void TwvMetrics::RefAndHypSeen(const std::string &kw_id, float score) {
std::list<float>::iterator i = stats_->sweep_threshold_values.begin();
for (; i != stats_->sweep_threshold_values.end(); ++i) {
float decision_threshold = *i;
if ( score >= decision_threshold )
stats_->otwv_sweep_cache[kw_id][decision_threshold].nof_corr++;
}
if (score >= atwv_decision_threshold_) {
stats_->global_keyword_stats.nof_corr++;
stats_->keyword_stats[kw_id].nof_corr++;
} else {
stats_->global_keyword_stats.nof_misses++;
stats_->keyword_stats[kw_id].nof_misses++;
}
stats_->global_keyword_stats.nof_targets++;
stats_->keyword_stats[kw_id].nof_targets++;
}
void TwvMetrics::OnlyHypSeen(const std::string &kw_id, float score) {
std::list<float>::iterator i = stats_->sweep_threshold_values.begin();
for (; i != stats_->sweep_threshold_values.end(); ++i) {
float decision_threshold = *i;
if ( score >= decision_threshold )
stats_->otwv_sweep_cache[kw_id][decision_threshold].nof_fa++;
}
if (score >= atwv_decision_threshold_) {
stats_->global_keyword_stats.nof_fa++;
stats_->keyword_stats[kw_id].nof_fa++;
} else {
stats_->global_keyword_stats.nof_corr_ndet++;
stats_->keyword_stats[kw_id].nof_corr_ndet++;
}
}
void TwvMetrics::OnlyRefSeen(const std::string &kw_id, float score) {
stats_->global_keyword_stats.nof_targets++;
stats_->keyword_stats[kw_id].nof_targets++;
stats_->global_keyword_stats.nof_unseen++;
stats_->keyword_stats[kw_id].nof_unseen++;
}
void TwvMetrics::AddAlignment(const KwsAlignment &ali) {
KwsAlignment::AlignedTerms::const_iterator it = ali.begin();
int k = 0;
while (it != ali.end()) {
AddEvent(it->ref, it->hyp, it->aligner_score);
++it;
++k;
}
KALDI_VLOG(4) << "Processed " << k << " alignment entries";
}
void TwvMetrics::Reset() {
delete stats_;
stats_ = new TwvMetricsStats;
}
float TwvMetrics::Atwv() {
typedef kws_internal::KwStats::iterator KwIterator;
int32 nof_kw = 0;
float atwv = 0;
for (KwIterator it = stats_->keyword_stats.begin();
it != stats_->keyword_stats.end(); ++it ) {
if (it->second.nof_targets == 0) {
continue;
}
float nof_targets = static_cast<float>(it->second.nof_targets);
float pmiss = 1 - it->second.nof_corr / nof_targets;
float pfa = it->second.nof_fa / (audio_duration_ - nof_targets);
float twv = 1 - pmiss - beta_ * pfa;
atwv = atwv * (nof_kw)/(nof_kw + 1.0) + twv / (nof_kw + 1.0);
nof_kw++;
}
return atwv;
}
float TwvMetrics::Stwv() {
typedef kws_internal::KwStats::iterator KwIterator;
int32 nof_kw = 0;
float stwv = 0;
for (KwIterator it = stats_->keyword_stats.begin();
it != stats_->keyword_stats.end(); ++it ) {
if (it->second.nof_targets == 0) {
continue;
}
float nof_targets = static_cast<float>(it->second.nof_targets);
float recall = 1 - it->second.nof_unseen / nof_targets;
stwv = stwv * (nof_kw)/(nof_kw + 1.0) + recall / (nof_kw + 1.0);
nof_kw++;
}
return stwv;
}
void TwvMetrics::GetOracleMeasures(float *final_mtwv,
float *final_mtwv_threshold,
float *final_otwv) {
typedef kws_internal::KwStats::iterator KwIterator;
int32 nof_kw = 0;
float otwv = 0;
unordered_map<float, double> mtwv_sweep;
for (KwIterator it = stats_->keyword_stats.begin();
it != stats_->keyword_stats.end(); ++it ) {
if (it->second.nof_targets == 0) {
continue;
}
std::string kw_id = it->first;
float local_otwv = -9999;
float local_otwv_threshold = -1.0;
std::list<float>::iterator i = stats_->sweep_threshold_values.begin();
for (; i != stats_->sweep_threshold_values.end(); ++i) {
float decision_threshold = *i;
float nof_targets = static_cast<float>(it->second.nof_targets);
float nof_true = stats_->otwv_sweep_cache[kw_id][decision_threshold].nof_corr;
float nof_fa = stats_->otwv_sweep_cache[kw_id][decision_threshold].nof_fa;
float pmiss = 1 - nof_true / nof_targets;
float pfa = nof_fa / (audio_duration_ - nof_targets);
float twv = 1 - pmiss - beta_ * pfa;
if (twv > local_otwv) {
local_otwv = twv;
local_otwv_threshold = decision_threshold;
}
mtwv_sweep[decision_threshold] = twv / (nof_kw + 1.0) +
mtwv_sweep[decision_threshold] * (nof_kw)/(nof_kw + 1.0);
}
KALDI_ASSERT(local_otwv_threshold >= 0);
otwv = otwv * (nof_kw)/(nof_kw + 1.0) + local_otwv / (nof_kw + 1.0);
nof_kw++;
}
float mtwv = -9999;
float mtwv_threshold = -1;
std::list<float>::iterator i = stats_->sweep_threshold_values.begin();
for (; i != stats_->sweep_threshold_values.end(); ++i) {
float decision_threshold = *i;
if (mtwv_sweep[decision_threshold] > mtwv) {
mtwv = mtwv_sweep[decision_threshold];
mtwv_threshold = decision_threshold;
}
}
KALDI_ASSERT(mtwv_threshold >= 0);
*final_mtwv = mtwv;
*final_mtwv_threshold = mtwv_threshold;
*final_otwv = otwv;
}
} // namespace kaldi