lattice-arc-post.cc
7.95 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// latbin/lattice-arc-post.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "fstext/fstext-lib.h"
#include "lat/kaldi-lattice.h"
#include "lat/lattice-functions.h"
namespace kaldi {
// This class computes and outputs
// the information about arc posteriors.
class ArcPosteriorComputer {
public:
// Note: 'clat' must be topologically sorted.
ArcPosteriorComputer(const CompactLattice &clat,
BaseFloat min_post,
bool print_alignment,
const TransitionModel *trans_model = NULL):
clat_(clat), min_post_(min_post), print_alignment_(print_alignment),
trans_model_(trans_model) { }
// returns the number of arc posteriors that it output.
int32 OutputPosteriors(const std::string &utterance,
std::ostream &os) {
int32 num_post = 0;
if (!ComputeCompactLatticeAlphas(clat_, &alpha_))
return num_post;
if (!ComputeCompactLatticeBetas(clat_, &beta_))
return num_post;
CompactLatticeStateTimes(clat_, &state_times_);
if (clat_.Start() < 0)
return 0;
double tot_like = beta_[clat_.Start()];
int32 num_states = clat_.NumStates();
for (int32 state = 0; state < num_states; state++) {
for (fst::ArcIterator<CompactLattice> aiter(clat_, state);
!aiter.Done(); aiter.Next()) {
const CompactLatticeArc &arc = aiter.Value();
double arc_loglike = -ConvertToCost(arc.weight) +
alpha_[state] + beta_[arc.nextstate] - tot_like;
KALDI_ASSERT(arc_loglike < 0.1 &&
"Bad arc posterior in forward-backward computation");
if (arc_loglike > 0.0) arc_loglike = 0.0;
int32 num_frames = arc.weight.String().size(),
word = arc.ilabel;
BaseFloat arc_post = exp(arc_loglike);
if (arc_post <= min_post_) continue;
os << utterance << '\t' << state_times_[state] << '\t' << num_frames
<< '\t' << arc_post << '\t' << word;
if (print_alignment_) {
os << '\t';
const std::vector<int32> &ali = arc.weight.String();
for (int32 frame = 0; frame < num_frames; frame++) {
os << ali[frame];
if (frame + 1 < num_frames) os << ',';
}
}
if (trans_model_ != NULL) {
// we want to print the phone sequence too.
os << '\t';
const std::vector<int32> &ali = arc.weight.String();
bool first_phone = true;
for (int32 frame = 0; frame < num_frames; frame++) {
if (trans_model_->IsFinal(ali[frame])) {
if (first_phone) first_phone = false;
else os << ' ';
os << trans_model_->TransitionIdToPhone(ali[frame]);
}
}
}
os << std::endl;
num_post++;
}
}
return num_post;
}
private:
const CompactLattice &clat_;
std::vector<double> alpha_;
std::vector<double> beta_;
std::vector<int32> state_times_;
BaseFloat min_post_;
bool print_alignment_;
const TransitionModel *trans_model_;
};
}
int main(int argc, char *argv[]) {
try {
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::VectorFst;
using fst::StdArc;
const char *usage =
"Print out information regarding posteriors of lattice arcs\n"
"This program computes posteriors from a lattice and prints out\n"
"information for each arc (the format is reminiscent of ctm, but\n"
"contains information from multiple paths). Each line is:\n"
" <utterance-id> <start-frame> <num-frames> <posterior> <word> [<ali>] [<phone1> <phone2>...]\n"
"for instance:\n"
"2013a04-bk42\t104\t26\t0.95\t0\t11,242,242,242,71,894,894,62,63,63,63,63\t2 8 9\n"
"where the --print-alignment option determines whether the alignments (i.e. the\n"
"sequences of transition-ids) are printed, and the phones are printed only if the\n"
"<model> is supplied on the command line. Note, there are tabs between the major\n"
"fields, but the phones are separated by spaces.\n"
"Usage: lattice-arc-post [<model>] <lattices-rspecifier> <output-wxfilename>\n"
"e.g.: lattice-arc-post --acoustic-scale=0.1 final.mdl 'ark:gunzip -c lat.1.gz|' post.txt\n"
"You will probably want to word-align the lattices (e.g. lattice-align-words or\n"
"lattice-align-words-lexicon) before this program, apply an acoustic scale either\n"
"via the --acoustic-scale option or using lattice-scale.\n"
"See also: lattice-post, lattice-to-ctm-conf, nbest-to-ctm\n";
kaldi::BaseFloat acoustic_scale = 1.0, lm_scale = 1.0;
kaldi::BaseFloat min_post = 0.0001;
bool print_alignment = false;
kaldi::ParseOptions po(usage);
po.Register("acoustic-scale", &acoustic_scale,
"Scaling factor for acoustic likelihoods");
po.Register("lm-scale", &lm_scale,
"Scaling factor for \"graph costs\" (including LM costs)");
po.Register("print-alignment", &print_alignment,
"If true, print alignments (i.e. sequences of transition-ids) for each\n"
"arc.");
po.Register("min-post", &min_post,
"Arc posteriors below this value will be pruned away");
po.Read(argc, argv);
if (po.NumArgs() < 2 || po.NumArgs() > 3) {
po.PrintUsage();
exit(1);
}
if (acoustic_scale == 0.0)
KALDI_ERR << "Do not use a zero acoustic scale (cannot be inverted)";
kaldi::TransitionModel trans_model;
std::string lats_rspecifier, output_wxfilename;
if (po.NumArgs() == 3) {
ReadKaldiObject(po.GetArg(1), &trans_model);
lats_rspecifier = po.GetArg(2);
output_wxfilename = po.GetArg(3);
} else {
lats_rspecifier = po.GetArg(1);
output_wxfilename = po.GetArg(2);
}
kaldi::Output output(output_wxfilename, false);
// Read as regular lattice
kaldi::SequentialCompactLatticeReader clat_reader(lats_rspecifier);
int64 tot_post = 0;
int32 num_lat_done = 0, num_lat_err = 0;
for (; !clat_reader.Done(); clat_reader.Next()) {
std::string key = clat_reader.Key();
kaldi::CompactLattice clat = clat_reader.Value();
// FreeCurrent() is an optimization that prevents the lattice from being
// copied unnecessarily (OpenFst does copy-on-write).
clat_reader.FreeCurrent();
fst::ScaleLattice(fst::LatticeScale(lm_scale, acoustic_scale), &clat);
kaldi::TopSortCompactLatticeIfNeeded(&clat);
kaldi::ArcPosteriorComputer computer(
clat, min_post, print_alignment,
(po.NumArgs() == 3 ? &trans_model : NULL));
int32 num_post = computer.OutputPosteriors(key, output.Stream());
if (num_post != 0) {
num_lat_done++;
tot_post += num_post;
} else {
num_lat_err++;
KALDI_WARN << "No posterior printed for " << key;
}
}
KALDI_LOG << "Printed posteriors for " << num_lat_done << " lattices ("
<< num_lat_err << " with errors); on average printed "
<< (tot_post / (num_lat_done == 0 ? 1 : num_lat_done))
<< " posteriors per lattice.";
return (num_lat_done > 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}