lattice-lmrescore-kaldi-rnnlm-pruned.cc
7.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// latbin/lattice-lmrescore-kaldi-rnnlm-pruned.cc
// Copyright 2017 Johns Hopkins University (author: Daniel Povey)
// 2017 Hainan Xu
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "fstext/fstext-lib.h"
#include "rnnlm/rnnlm-lattice-rescoring.h"
#include "lm/const-arpa-lm.h"
#include "util/common-utils.h"
#include "nnet3/nnet-utils.h"
#include "lat/kaldi-lattice.h"
#include "lat/lattice-functions.h"
#include "lat/compose-lattice-pruned.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
using fst::SymbolTable;
using fst::VectorFst;
using fst::StdArc;
using fst::ReadFstKaldi;
const char *usage =
"Rescores lattice with kaldi-rnnlm. This script is called from \n"
"scripts/rnnlm/lmrescore_pruned.sh. An example for rescoring \n"
"lattices is at egs/swbd/s5c/local/rnnlm/run_lstm.sh \n"
"\n"
"Usage: lattice-lmrescore-kaldi-rnnlm-pruned [options] \\\n"
" <old-lm-rxfilename> <embedding-file> \\\n"
" <raw-rnnlm-rxfilename> \\\n"
" <lattice-rspecifier> <lattice-wspecifier>\n"
" e.g.: lattice-lmrescore-kaldi-rnnlm-pruned --lm-scale=-1.0 fst_words.txt \\\n"
" --bos-symbol=1 --eos-symbol=2 \\\n"
" data/lang_test/G.fst word_embedding.mat \\\n"
" final.raw ark:in.lats ark:out.lats\n\n"
" lattice-lmrescore-kaldi-rnnlm-pruned --lm-scale=-1.0 fst_words.txt \\\n"
" --bos-symbol=1 --eos-symbol=2 \\\n"
" data/lang_test_fg/G.carpa word_embedding.mat \\\n"
" final.raw ark:in.lats ark:out.lats\n";
ParseOptions po(usage);
rnnlm::RnnlmComputeStateComputationOptions opts;
ComposeLatticePrunedOptions compose_opts;
int32 max_ngram_order = 3;
BaseFloat lm_scale = 0.5;
BaseFloat acoustic_scale = 0.1;
bool use_carpa = false;
po.Register("lm-scale", &lm_scale, "Scaling factor for <lm-to-add>; its negative "
"will be applied to <lm-to-subtract>.");
po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic "
"probabilities (e.g. 0.1 for non-chain systems); important because "
"of its effect on pruning.");
po.Register("max-ngram-order", &max_ngram_order,
"If positive, allow RNNLM histories longer than this to be identified "
"with each other for rescoring purposes (an approximation that "
"saves time and reduces output lattice size).");
po.Register("use-const-arpa", &use_carpa, "If true, read the old-LM file "
"as a const-arpa file as opposed to an FST file");
opts.Register(&po);
compose_opts.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 5) {
po.PrintUsage();
exit(1);
}
if (opts.bos_index == -1 || opts.eos_index == -1) {
KALDI_ERR << "must set --bos-symbol and --eos-symbol options";
}
std::string lm_to_subtract_rxfilename, lats_rspecifier,
word_embedding_rxfilename, rnnlm_rxfilename, lats_wspecifier;
lm_to_subtract_rxfilename = po.GetArg(1),
word_embedding_rxfilename = po.GetArg(2);
rnnlm_rxfilename = po.GetArg(3);
lats_rspecifier = po.GetArg(4);
lats_wspecifier = po.GetArg(5);
// for G.fst
fst::ScaleDeterministicOnDemandFst *lm_to_subtract_det_scale = NULL;
fst::BackoffDeterministicOnDemandFst<StdArc> *lm_to_subtract_det_backoff = NULL;
VectorFst<StdArc> *lm_to_subtract_fst = NULL;
// for G.carpa
ConstArpaLm* const_arpa = NULL;
fst::DeterministicOnDemandFst<StdArc> *carpa_lm_to_subtract_fst = NULL;
KALDI_LOG << "Reading old LMs...";
if (use_carpa) {
const_arpa = new ConstArpaLm();
ReadKaldiObject(lm_to_subtract_rxfilename, const_arpa);
carpa_lm_to_subtract_fst = new ConstArpaLmDeterministicFst(*const_arpa);
lm_to_subtract_det_scale
= new fst::ScaleDeterministicOnDemandFst(-lm_scale,
carpa_lm_to_subtract_fst);
} else {
lm_to_subtract_fst = fst::ReadAndPrepareLmFst(
lm_to_subtract_rxfilename);
lm_to_subtract_det_backoff =
new fst::BackoffDeterministicOnDemandFst<StdArc>(*lm_to_subtract_fst);
lm_to_subtract_det_scale =
new fst::ScaleDeterministicOnDemandFst(-lm_scale,
lm_to_subtract_det_backoff);
}
kaldi::nnet3::Nnet rnnlm;
ReadKaldiObject(rnnlm_rxfilename, &rnnlm);
KALDI_ASSERT(IsSimpleNnet(rnnlm));
CuMatrix<BaseFloat> word_embedding_mat;
ReadKaldiObject(word_embedding_rxfilename, &word_embedding_mat);
const rnnlm::RnnlmComputeStateInfo info(opts, rnnlm, word_embedding_mat);
// Reads and writes as compact lattice.
SequentialCompactLatticeReader compact_lattice_reader(lats_rspecifier);
CompactLatticeWriter compact_lattice_writer(lats_wspecifier);
int32 num_done = 0, num_err = 0;
rnnlm::KaldiRnnlmDeterministicFst* lm_to_add_orig =
new rnnlm::KaldiRnnlmDeterministicFst(max_ngram_order, info);
for (; !compact_lattice_reader.Done(); compact_lattice_reader.Next()) {
fst::DeterministicOnDemandFst<StdArc> *lm_to_add =
new fst::ScaleDeterministicOnDemandFst(lm_scale, lm_to_add_orig);
std::string key = compact_lattice_reader.Key();
CompactLattice clat = compact_lattice_reader.Value();
compact_lattice_reader.FreeCurrent();
// Before composing with the LM FST, we scale the lattice weights
// by the inverse of "lm_scale". We'll later scale by "lm_scale".
// We do it this way so we can determinize and it will give the
// right effect (taking the "best path" through the LM) regardless
// of the sign of lm_scale.
if (acoustic_scale != 1.0) {
fst::ScaleLattice(fst::AcousticLatticeScale(acoustic_scale), &clat);
}
TopSortCompactLatticeIfNeeded(&clat);
fst::ComposeDeterministicOnDemandFst<StdArc> combined_lms(
lm_to_subtract_det_scale, lm_to_add);
// Composes lattice with language model.
CompactLattice composed_clat;
ComposeCompactLatticePruned(compose_opts, clat,
&combined_lms, &composed_clat);
lm_to_add_orig->Clear();
if (composed_clat.NumStates() == 0) {
// Something went wrong. A warning will already have been printed.
num_err++;
} else {
if (acoustic_scale != 1.0) {
if (acoustic_scale == 0.0)
KALDI_ERR << "Acoustic scale cannot be zero.";
fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale),
&composed_clat);
}
compact_lattice_writer.Write(key, composed_clat);
num_done++;
}
delete lm_to_add;
}
delete lm_to_subtract_fst;
delete lm_to_add_orig;
delete lm_to_subtract_det_backoff;
delete lm_to_subtract_det_scale;
delete const_arpa;
delete carpa_lm_to_subtract_fst;
KALDI_LOG << "Overall, succeeded for " << num_done
<< " lattices, failed for " << num_err;
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}