kaldi-vector.cc
42.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
// matrix/kaldi-vector.cc
// Copyright 2009-2011 Microsoft Corporation; Lukas Burget;
// Saarland University; Go Vivace Inc.; Ariya Rastrow;
// Petr Schwarz; Yanmin Qian; Jan Silovsky;
// Haihua Xu; Wei Shi
// 2015 Guoguo Chen
// 2017 Daniel Galvez
// 2019 Yiwen Shao
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include "matrix/cblas-wrappers.h"
#include "matrix/kaldi-vector.h"
#include "matrix/kaldi-matrix.h"
#include "matrix/sp-matrix.h"
#include "matrix/sparse-matrix.h"
namespace kaldi {
template<typename Real>
Real VecVec(const VectorBase<Real> &a,
const VectorBase<Real> &b) {
MatrixIndexT adim = a.Dim();
KALDI_ASSERT(adim == b.Dim());
return cblas_Xdot(adim, a.Data(), 1, b.Data(), 1);
}
template
float VecVec<>(const VectorBase<float> &a,
const VectorBase<float> &b);
template
double VecVec<>(const VectorBase<double> &a,
const VectorBase<double> &b);
template<typename Real, typename OtherReal>
Real VecVec(const VectorBase<Real> &ra,
const VectorBase<OtherReal> &rb) {
MatrixIndexT adim = ra.Dim();
KALDI_ASSERT(adim == rb.Dim());
const Real *a_data = ra.Data();
const OtherReal *b_data = rb.Data();
Real sum = 0.0;
for (MatrixIndexT i = 0; i < adim; i++)
sum += a_data[i]*b_data[i];
return sum;
}
// instantiate the template above.
template
float VecVec<>(const VectorBase<float> &ra,
const VectorBase<double> &rb);
template
double VecVec<>(const VectorBase<double> &ra,
const VectorBase<float> &rb);
template<>
template<>
void VectorBase<float>::AddVec(const float alpha,
const VectorBase<float> &v) {
KALDI_ASSERT(dim_ == v.dim_);
KALDI_ASSERT(&v != this);
cblas_Xaxpy(dim_, alpha, v.Data(), 1, data_, 1);
}
template<>
template<>
void VectorBase<double>::AddVec(const double alpha,
const VectorBase<double> &v) {
KALDI_ASSERT(dim_ == v.dim_);
KALDI_ASSERT(&v != this);
cblas_Xaxpy(dim_, alpha, v.Data(), 1, data_, 1);
}
template<typename Real>
void VectorBase<Real>::AddMatVec(const Real alpha,
const MatrixBase<Real> &M,
MatrixTransposeType trans,
const VectorBase<Real> &v,
const Real beta) {
KALDI_ASSERT((trans == kNoTrans && M.NumCols() == v.dim_ && M.NumRows() == dim_)
|| (trans == kTrans && M.NumRows() == v.dim_ && M.NumCols() == dim_));
KALDI_ASSERT(&v != this);
cblas_Xgemv(trans, M.NumRows(), M.NumCols(), alpha, M.Data(), M.Stride(),
v.Data(), 1, beta, data_, 1);
}
template<typename Real>
void VectorBase<Real>::AddMatSvec(const Real alpha,
const MatrixBase<Real> &M,
MatrixTransposeType trans,
const VectorBase<Real> &v,
const Real beta) {
KALDI_ASSERT((trans == kNoTrans && M.NumCols() == v.dim_ && M.NumRows() == dim_)
|| (trans == kTrans && M.NumRows() == v.dim_ && M.NumCols() == dim_));
KALDI_ASSERT(&v != this);
Xgemv_sparsevec(trans, M.NumRows(), M.NumCols(), alpha, M.Data(), M.Stride(),
v.Data(), 1, beta, data_, 1);
return;
/*
MatrixIndexT this_dim = this->dim_, v_dim = v.dim_,
M_stride = M.Stride();
Real *this_data = this->data_;
const Real *M_data = M.Data(), *v_data = v.data_;
if (beta != 1.0) this->Scale(beta);
if (trans == kNoTrans) {
for (MatrixIndexT i = 0; i < v_dim; i++) {
Real v_i = v_data[i];
if (v_i == 0.0) continue;
// Add to *this, the i'th column of the Matrix, times v_i.
cblas_Xaxpy(this_dim, v_i * alpha, M_data + i, M_stride, this_data, 1);
}
} else { // The transposed case is slightly more efficient, I guess.
for (MatrixIndexT i = 0; i < v_dim; i++) {
Real v_i = v.data_[i];
if (v_i == 0.0) continue;
// Add to *this, the i'th row of the Matrix, times v_i.
cblas_Xaxpy(this_dim, v_i * alpha,
M_data + (i * M_stride), 1, this_data, 1);
}
}*/
}
template<typename Real>
void VectorBase<Real>::AddSpVec(const Real alpha,
const SpMatrix<Real> &M,
const VectorBase<Real> &v,
const Real beta) {
KALDI_ASSERT(M.NumRows() == v.dim_ && dim_ == v.dim_);
KALDI_ASSERT(&v != this);
cblas_Xspmv(alpha, M.NumRows(), M.Data(), v.Data(), 1, beta, data_, 1);
}
template<typename Real>
void VectorBase<Real>::MulTp(const TpMatrix<Real> &M,
const MatrixTransposeType trans) {
KALDI_ASSERT(M.NumRows() == dim_);
cblas_Xtpmv(trans,M.Data(),M.NumRows(),data_,1);
}
template<typename Real>
void VectorBase<Real>::Solve(const TpMatrix<Real> &M,
const MatrixTransposeType trans) {
KALDI_ASSERT(M.NumRows() == dim_);
cblas_Xtpsv(trans, M.Data(), M.NumRows(), data_, 1);
}
template<typename Real>
inline void Vector<Real>::Init(const MatrixIndexT dim) {
KALDI_ASSERT(dim >= 0);
if (dim == 0) {
this->dim_ = 0;
this->data_ = NULL;
return;
}
MatrixIndexT size;
void *data;
void *free_data;
size = dim * sizeof(Real);
if ((data = KALDI_MEMALIGN(16, size, &free_data)) != NULL) {
this->data_ = static_cast<Real*> (data);
this->dim_ = dim;
} else {
throw std::bad_alloc();
}
}
template<typename Real>
void Vector<Real>::Resize(const MatrixIndexT dim, MatrixResizeType resize_type) {
// the next block uses recursion to handle what we have to do if
// resize_type == kCopyData.
if (resize_type == kCopyData) {
if (this->data_ == NULL || dim == 0) resize_type = kSetZero; // nothing to copy.
else if (this->dim_ == dim) { return; } // nothing to do.
else {
// set tmp to a vector of the desired size.
Vector<Real> tmp(dim, kUndefined);
if (dim > this->dim_) {
memcpy(tmp.data_, this->data_, sizeof(Real)*this->dim_);
memset(tmp.data_+this->dim_, 0, sizeof(Real)*(dim-this->dim_));
} else {
memcpy(tmp.data_, this->data_, sizeof(Real)*dim);
}
tmp.Swap(this);
// and now let tmp go out of scope, deleting what was in *this.
return;
}
}
// At this point, resize_type == kSetZero or kUndefined.
if (this->data_ != NULL) {
if (this->dim_ == dim) {
if (resize_type == kSetZero) this->SetZero();
return;
} else {
Destroy();
}
}
Init(dim);
if (resize_type == kSetZero) this->SetZero();
}
/// Copy data from another vector
template<typename Real>
void VectorBase<Real>::CopyFromVec(const VectorBase<Real> &v) {
KALDI_ASSERT(Dim() == v.Dim());
if (data_ != v.data_) {
std::memcpy(this->data_, v.data_, dim_ * sizeof(Real));
}
}
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::CopyFromPacked(const PackedMatrix<OtherReal>& M) {
SubVector<OtherReal> v(M);
this->CopyFromVec(v);
}
// instantiate the template.
template void VectorBase<float>::CopyFromPacked(const PackedMatrix<double> &other);
template void VectorBase<float>::CopyFromPacked(const PackedMatrix<float> &other);
template void VectorBase<double>::CopyFromPacked(const PackedMatrix<double> &other);
template void VectorBase<double>::CopyFromPacked(const PackedMatrix<float> &other);
/// Load data into the vector
template<typename Real>
void VectorBase<Real>::CopyFromPtr(const Real *data, MatrixIndexT sz) {
KALDI_ASSERT(dim_ == sz);
std::memcpy(this->data_, data, Dim() * sizeof(Real));
}
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::CopyFromVec(const VectorBase<OtherReal> &other) {
KALDI_ASSERT(dim_ == other.Dim());
Real * __restrict__ ptr = data_;
const OtherReal * __restrict__ other_ptr = other.Data();
for (MatrixIndexT i = 0; i < dim_; i++)
ptr[i] = other_ptr[i];
}
template void VectorBase<float>::CopyFromVec(const VectorBase<double> &other);
template void VectorBase<double>::CopyFromVec(const VectorBase<float> &other);
// Remove element from the vector. The vector is non reallocated
template<typename Real>
void Vector<Real>::RemoveElement(MatrixIndexT i) {
KALDI_ASSERT(i < this->dim_ && "Access out of vector");
for (MatrixIndexT j = i + 1; j < this->dim_; j++)
this->data_[j-1] = this->data_[j];
this->dim_--;
}
/// Deallocates memory and sets object to empty vector.
template<typename Real>
void Vector<Real>::Destroy() {
/// we need to free the data block if it was defined
if (this->data_ != NULL)
KALDI_MEMALIGN_FREE(this->data_);
this->data_ = NULL;
this->dim_ = 0;
}
template<typename Real>
void VectorBase<Real>::SetZero() {
std::memset(data_, 0, dim_ * sizeof(Real));
}
template<typename Real>
bool VectorBase<Real>::IsZero(Real cutoff) const {
Real abs_max = 0.0;
for (MatrixIndexT i = 0; i < Dim(); i++)
abs_max = std::max(std::abs(data_[i]), abs_max);
return (abs_max <= cutoff);
}
template<typename Real>
void VectorBase<Real>::SetRandn() {
kaldi::RandomState rstate;
MatrixIndexT last = (Dim() % 2 == 1) ? Dim() - 1 : Dim();
for (MatrixIndexT i = 0; i < last; i += 2) {
kaldi::RandGauss2(data_ + i, data_ + i +1, &rstate);
}
if (Dim() != last) data_[last] = static_cast<Real>(kaldi::RandGauss(&rstate));
}
template<typename Real>
void VectorBase<Real>::SetRandUniform() {
kaldi::RandomState rstate;
for (MatrixIndexT i = 0; i < Dim(); i++) {
*(data_+i) = RandUniform(&rstate);
}
}
template<typename Real>
MatrixIndexT VectorBase<Real>::RandCategorical() const {
kaldi::RandomState rstate;
Real sum = this->Sum();
KALDI_ASSERT(this->Min() >= 0.0 && sum > 0.0);
Real r = RandUniform(&rstate) * sum;
Real *data = this->data_;
MatrixIndexT dim = this->dim_;
Real running_sum = 0.0;
for (MatrixIndexT i = 0; i < dim; i++) {
running_sum += data[i];
if (r < running_sum) return i;
}
return dim_ - 1; // Should only happen if RandUniform()
// returns exactly 1, or due to roundoff.
}
template<typename Real>
void VectorBase<Real>::Set(Real f) {
// Why not use memset here?
for (MatrixIndexT i = 0; i < dim_; i++) { data_[i] = f; }
}
template<typename Real>
void VectorBase<Real>::CopyRowsFromMat(const MatrixBase<Real> &mat) {
KALDI_ASSERT(dim_ == mat.NumCols() * mat.NumRows());
Real *inc_data = data_;
const MatrixIndexT cols = mat.NumCols(), rows = mat.NumRows();
if (mat.Stride() == mat.NumCols()) {
memcpy(inc_data, mat.Data(), cols*rows*sizeof(Real));
} else {
for (MatrixIndexT i = 0; i < rows; i++) {
// copy the data to the propper position
memcpy(inc_data, mat.RowData(i), cols * sizeof(Real));
// set new copy position
inc_data += cols;
}
}
}
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::CopyRowsFromMat(const MatrixBase<OtherReal> &mat) {
KALDI_ASSERT(dim_ == mat.NumCols() * mat.NumRows());
Real *vec_data = data_;
const MatrixIndexT cols = mat.NumCols(),
rows = mat.NumRows();
for (MatrixIndexT i = 0; i < rows; i++) {
const OtherReal *mat_row = mat.RowData(i);
for (MatrixIndexT j = 0; j < cols; j++) {
vec_data[j] = static_cast<Real>(mat_row[j]);
}
vec_data += cols;
}
}
template
void VectorBase<float>::CopyRowsFromMat(const MatrixBase<double> &mat);
template
void VectorBase<double>::CopyRowsFromMat(const MatrixBase<float> &mat);
template<typename Real>
void VectorBase<Real>::CopyColsFromMat(const MatrixBase<Real> &mat) {
KALDI_ASSERT(dim_ == mat.NumCols() * mat.NumRows());
Real* inc_data = data_;
const MatrixIndexT cols = mat.NumCols(), rows = mat.NumRows(), stride = mat.Stride();
const Real *mat_inc_data = mat.Data();
for (MatrixIndexT i = 0; i < cols; i++) {
for (MatrixIndexT j = 0; j < rows; j++) {
inc_data[j] = mat_inc_data[j*stride];
}
mat_inc_data++;
inc_data += rows;
}
}
template<typename Real>
void VectorBase<Real>::CopyRowFromMat(const MatrixBase<Real> &mat, MatrixIndexT row) {
KALDI_ASSERT(row < mat.NumRows());
KALDI_ASSERT(dim_ == mat.NumCols());
const Real *mat_row = mat.RowData(row);
memcpy(data_, mat_row, sizeof(Real)*dim_);
}
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::CopyRowFromMat(const MatrixBase<OtherReal> &mat, MatrixIndexT row) {
KALDI_ASSERT(row < mat.NumRows());
KALDI_ASSERT(dim_ == mat.NumCols());
const OtherReal *mat_row = mat.RowData(row);
for (MatrixIndexT i = 0; i < dim_; i++)
data_[i] = static_cast<Real>(mat_row[i]);
}
template
void VectorBase<float>::CopyRowFromMat(const MatrixBase<double> &mat, MatrixIndexT row);
template
void VectorBase<double>::CopyRowFromMat(const MatrixBase<float> &mat, MatrixIndexT row);
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::CopyRowFromSp(const SpMatrix<OtherReal> &sp, MatrixIndexT row) {
KALDI_ASSERT(row < sp.NumRows());
KALDI_ASSERT(dim_ == sp.NumCols());
const OtherReal *sp_data = sp.Data();
sp_data += (row*(row+1)) / 2; // takes us to beginning of this row.
MatrixIndexT i;
for (i = 0; i < row; i++) // copy consecutive elements.
data_[i] = static_cast<Real>(*(sp_data++));
for(; i < dim_; ++i, sp_data += i)
data_[i] = static_cast<Real>(*sp_data);
}
template
void VectorBase<float>::CopyRowFromSp(const SpMatrix<double> &mat, MatrixIndexT row);
template
void VectorBase<double>::CopyRowFromSp(const SpMatrix<float> &mat, MatrixIndexT row);
template
void VectorBase<float>::CopyRowFromSp(const SpMatrix<float> &mat, MatrixIndexT row);
template
void VectorBase<double>::CopyRowFromSp(const SpMatrix<double> &mat, MatrixIndexT row);
#ifdef HAVE_MKL
template<>
void VectorBase<float>::Pow(const VectorBase<float> &v, float power) {
vsPowx(dim_, data_, power, v.data_);
}
template<>
void VectorBase<double>::Pow(const VectorBase<double> &v, double power) {
vdPowx(dim_, data_, power, v.data_);
}
#else
// takes elements to a power. Does not check output.
template<typename Real>
void VectorBase<Real>::Pow(const VectorBase<Real> &v, Real power) {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = pow(v.data_[i], power);
}
}
#endif
// takes absolute value of the elements to a power.
// Throws exception if could not (but only for power != 1 and power != 2).
template<typename Real>
void VectorBase<Real>::ApplyPowAbs(Real power, bool include_sign) {
if (power == 1.0)
for (MatrixIndexT i = 0; i < dim_; i++)
data_[i] = (include_sign && data_[i] < 0 ? -1 : 1) * std::abs(data_[i]);
if (power == 2.0) {
for (MatrixIndexT i = 0; i < dim_; i++)
data_[i] = (include_sign && data_[i] < 0 ? -1 : 1) * data_[i] * data_[i];
} else if (power == 0.5) {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = (include_sign && data_[i] < 0 ? -1 : 1) * std::sqrt(std::abs(data_[i]));
}
} else if (power < 0.0) {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = (data_[i] == 0.0 ? 0.0 : pow(std::abs(data_[i]), power));
data_[i] *= (include_sign && data_[i] < 0 ? -1 : 1);
if (data_[i] == HUGE_VAL) { // HUGE_VAL is what errno returns on error.
KALDI_ERR << "Could not raise element " << i << "to power "
<< power << ": returned value = " << data_[i];
}
}
} else {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = (include_sign && data_[i] < 0 ? -1 : 1) * pow(std::abs(data_[i]), power);
if (data_[i] == HUGE_VAL) { // HUGE_VAL is what errno returns on error.
KALDI_ERR << "Could not raise element " << i << "to power "
<< power << ": returned value = " << data_[i];
}
}
}
}
// Computes the p-th norm. Throws exception if could not.
template<typename Real>
Real VectorBase<Real>::Norm(Real p) const {
KALDI_ASSERT(p >= 0.0);
Real sum = 0.0;
if (p == 0.0) {
for (MatrixIndexT i = 0; i < dim_; i++)
if (data_[i] != 0.0) sum += 1.0;
return sum;
} else if (p == 1.0) {
for (MatrixIndexT i = 0; i < dim_; i++)
sum += std::abs(data_[i]);
return sum;
} else if (p == 2.0) {
for (MatrixIndexT i = 0; i < dim_; i++)
sum += data_[i] * data_[i];
return std::sqrt(sum);
} else if (p == std::numeric_limits<Real>::infinity()){
for (MatrixIndexT i = 0; i < dim_; i++)
sum = std::max(sum, std::abs(data_[i]));
return sum;
} else {
Real tmp;
bool ok = true;
for (MatrixIndexT i = 0; i < dim_; i++) {
tmp = pow(std::abs(data_[i]), p);
if (tmp == HUGE_VAL) // HUGE_VAL is what pow returns on error.
ok = false;
sum += tmp;
}
tmp = pow(sum, static_cast<Real>(1.0/p));
KALDI_ASSERT(tmp != HUGE_VAL); // should not happen here.
if (ok) {
return tmp;
} else {
Real maximum = this->Max(), minimum = this->Min(),
max_abs = std::max(maximum, -minimum);
KALDI_ASSERT(max_abs > 0); // Or should not have reached here.
Vector<Real> tmp(*this);
tmp.Scale(1.0 / max_abs);
return tmp.Norm(p) * max_abs;
}
}
}
template<typename Real>
bool VectorBase<Real>::ApproxEqual(const VectorBase<Real> &other, float tol) const {
if (dim_ != other.dim_) KALDI_ERR << "ApproxEqual: size mismatch "
<< dim_ << " vs. " << other.dim_;
KALDI_ASSERT(tol >= 0.0);
if (tol != 0.0) {
Vector<Real> tmp(*this);
tmp.AddVec(-1.0, other);
return (tmp.Norm(2.0) <= static_cast<Real>(tol) * this->Norm(2.0));
} else { // Test for exact equality.
const Real *data = data_;
const Real *other_data = other.data_;
for (MatrixIndexT dim = dim_, i = 0; i < dim; i++)
if (data[i] != other_data[i]) return false;
return true;
}
}
template<typename Real>
Real VectorBase<Real>::Max() const {
Real ans = - std::numeric_limits<Real>::infinity();
const Real *data = data_;
MatrixIndexT i, dim = dim_;
for (i = 0; i + 4 <= dim; i += 4) {
Real a1 = data[i], a2 = data[i+1], a3 = data[i+2], a4 = data[i+3];
if (a1 > ans || a2 > ans || a3 > ans || a4 > ans) {
Real b1 = (a1 > a2 ? a1 : a2), b2 = (a3 > a4 ? a3 : a4);
if (b1 > ans) ans = b1;
if (b2 > ans) ans = b2;
}
}
for (; i < dim; i++)
if (data[i] > ans) ans = data[i];
return ans;
}
template<typename Real>
Real VectorBase<Real>::Max(MatrixIndexT *index_out) const {
if (dim_ == 0) KALDI_ERR << "Empty vector";
Real ans = - std::numeric_limits<Real>::infinity();
MatrixIndexT index = 0;
const Real *data = data_;
MatrixIndexT i, dim = dim_;
for (i = 0; i + 4 <= dim; i += 4) {
Real a1 = data[i], a2 = data[i+1], a3 = data[i+2], a4 = data[i+3];
if (a1 > ans || a2 > ans || a3 > ans || a4 > ans) {
if (a1 > ans) { ans = a1; index = i; }
if (a2 > ans) { ans = a2; index = i + 1; }
if (a3 > ans) { ans = a3; index = i + 2; }
if (a4 > ans) { ans = a4; index = i + 3; }
}
}
for (; i < dim; i++)
if (data[i] > ans) { ans = data[i]; index = i; }
*index_out = index;
return ans;
}
template<typename Real>
Real VectorBase<Real>::Min() const {
Real ans = std::numeric_limits<Real>::infinity();
const Real *data = data_;
MatrixIndexT i, dim = dim_;
for (i = 0; i + 4 <= dim; i += 4) {
Real a1 = data[i], a2 = data[i+1], a3 = data[i+2], a4 = data[i+3];
if (a1 < ans || a2 < ans || a3 < ans || a4 < ans) {
Real b1 = (a1 < a2 ? a1 : a2), b2 = (a3 < a4 ? a3 : a4);
if (b1 < ans) ans = b1;
if (b2 < ans) ans = b2;
}
}
for (; i < dim; i++)
if (data[i] < ans) ans = data[i];
return ans;
}
template<typename Real>
Real VectorBase<Real>::Min(MatrixIndexT *index_out) const {
if (dim_ == 0) KALDI_ERR << "Empty vector";
Real ans = std::numeric_limits<Real>::infinity();
MatrixIndexT index = 0;
const Real *data = data_;
MatrixIndexT i, dim = dim_;
for (i = 0; i + 4 <= dim; i += 4) {
Real a1 = data[i], a2 = data[i+1], a3 = data[i+2], a4 = data[i+3];
if (a1 < ans || a2 < ans || a3 < ans || a4 < ans) {
if (a1 < ans) { ans = a1; index = i; }
if (a2 < ans) { ans = a2; index = i + 1; }
if (a3 < ans) { ans = a3; index = i + 2; }
if (a4 < ans) { ans = a4; index = i + 3; }
}
}
for (; i < dim; i++)
if (data[i] < ans) { ans = data[i]; index = i; }
*index_out = index;
return ans;
}
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::CopyColFromMat(const MatrixBase<OtherReal> &mat, MatrixIndexT col) {
KALDI_ASSERT(col < mat.NumCols());
KALDI_ASSERT(dim_ == mat.NumRows());
for (MatrixIndexT i = 0; i < dim_; i++)
data_[i] = mat(i, col);
// can't do this very efficiently so don't really bother. could improve this though.
}
// instantiate the template above.
template
void VectorBase<float>::CopyColFromMat(const MatrixBase<float> &mat, MatrixIndexT col);
template
void VectorBase<float>::CopyColFromMat(const MatrixBase<double> &mat, MatrixIndexT col);
template
void VectorBase<double>::CopyColFromMat(const MatrixBase<float> &mat, MatrixIndexT col);
template
void VectorBase<double>::CopyColFromMat(const MatrixBase<double> &mat, MatrixIndexT col);
template<typename Real>
void VectorBase<Real>::CopyDiagFromMat(const MatrixBase<Real> &M) {
KALDI_ASSERT(dim_ == std::min(M.NumRows(), M.NumCols()));
cblas_Xcopy(dim_, M.Data(), M.Stride() + 1, data_, 1);
}
template<typename Real>
void VectorBase<Real>::CopyDiagFromPacked(const PackedMatrix<Real> &M) {
KALDI_ASSERT(dim_ == M.NumCols());
for (MatrixIndexT i = 0; i < dim_; i++)
data_[i] = M(i, i);
// could make this more efficient.
}
template<typename Real>
Real VectorBase<Real>::Sum() const {
// Do a dot-product with a size-1 array with a stride of 0 to
// implement sum. This allows us to access SIMD operations in a
// cross-platform way via your BLAS library.
Real one(1);
return cblas_Xdot(dim_, data_, 1, &one, 0);
}
template<typename Real>
Real VectorBase<Real>::SumLog() const {
double sum_log = 0.0;
double prod = 1.0;
for (MatrixIndexT i = 0; i < dim_; i++) {
prod *= data_[i];
// Possible future work (arnab): change these magic values to pre-defined
// constants
if (prod < 1.0e-10 || prod > 1.0e+10) {
sum_log += Log(prod);
prod = 1.0;
}
}
if (prod != 1.0) sum_log += Log(prod);
return sum_log;
}
template<typename Real>
void VectorBase<Real>::AddRowSumMat(Real alpha, const MatrixBase<Real> &M, Real beta) {
KALDI_ASSERT(dim_ == M.NumCols());
MatrixIndexT num_rows = M.NumRows(), stride = M.Stride(), dim = dim_;
Real *data = data_;
// implement the function according to a dimension cutoff for computation efficiency
if (num_rows <= 64) {
cblas_Xscal(dim, beta, data, 1);
const Real *m_data = M.Data();
for (MatrixIndexT i = 0; i < num_rows; i++, m_data += stride)
cblas_Xaxpy(dim, alpha, m_data, 1, data, 1);
} else {
Vector<Real> ones(M.NumRows());
ones.Set(1.0);
this->AddMatVec(alpha, M, kTrans, ones, beta);
}
}
template<typename Real>
void VectorBase<Real>::AddColSumMat(Real alpha, const MatrixBase<Real> &M, Real beta) {
KALDI_ASSERT(dim_ == M.NumRows());
MatrixIndexT num_cols = M.NumCols();
// implement the function according to a dimension cutoff for computation efficiency
if (num_cols <= 64) {
for (MatrixIndexT i = 0; i < dim_; i++) {
double sum = 0.0;
const Real *src = M.RowData(i);
for (MatrixIndexT j = 0; j < num_cols; j++)
sum += src[j];
data_[i] = alpha * sum + beta * data_[i];
}
} else {
Vector<Real> ones(M.NumCols());
ones.Set(1.0);
this->AddMatVec(alpha, M, kNoTrans, ones, beta);
}
}
template<typename Real>
Real VectorBase<Real>::LogSumExp(Real prune) const {
Real sum;
if (sizeof(sum) == 8) sum = kLogZeroDouble;
else sum = kLogZeroFloat;
Real max_elem = Max(), cutoff;
if (sizeof(Real) == 4) cutoff = max_elem + kMinLogDiffFloat;
else cutoff = max_elem + kMinLogDiffDouble;
if (prune > 0.0 && max_elem - prune > cutoff) // explicit pruning...
cutoff = max_elem - prune;
double sum_relto_max_elem = 0.0;
for (MatrixIndexT i = 0; i < dim_; i++) {
BaseFloat f = data_[i];
if (f >= cutoff)
sum_relto_max_elem += Exp(f - max_elem);
}
return max_elem + Log(sum_relto_max_elem);
}
template<typename Real>
void VectorBase<Real>::InvertElements() {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = static_cast<Real>(1 / data_[i]);
}
}
template<typename Real>
void VectorBase<Real>::ApplyLog() {
for (MatrixIndexT i = 0; i < dim_; i++) {
if (data_[i] < 0.0)
KALDI_ERR << "Trying to take log of a negative number.";
data_[i] = Log(data_[i]);
}
}
template<typename Real>
void VectorBase<Real>::ApplyLogAndCopy(const VectorBase<Real> &v) {
KALDI_ASSERT(dim_ == v.Dim());
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = Log(v(i));
}
}
template<typename Real>
void VectorBase<Real>::ApplyExp() {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = Exp(data_[i]);
}
}
template<typename Real>
void VectorBase<Real>::ApplyAbs() {
for (MatrixIndexT i = 0; i < dim_; i++) { data_[i] = std::abs(data_[i]); }
}
template<typename Real>
void VectorBase<Real>::Floor(const VectorBase<Real> &v, Real floor_val, MatrixIndexT *floored_count) {
if (floored_count == nullptr) {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = std::max(v.data_[i], floor_val);
}
} else {
MatrixIndexT num_floored = 0;
for (MatrixIndexT i = 0; i < dim_; i++) {
if (v.data_[i] < floor_val) {
data_[i] = floor_val;
num_floored++;
} else {
data_[i] = v.data_[i];
}
}
*floored_count = num_floored;
}
}
template<typename Real>
void VectorBase<Real>::Ceiling(const VectorBase<Real> &v, Real ceil_val, MatrixIndexT *ceiled_count) {
if (ceiled_count == nullptr) {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = std::min(v.data_[i], ceil_val);
}
} else {
MatrixIndexT num_changed = 0;
for (MatrixIndexT i = 0; i < dim_; i++) {
if (v.data_[i] > ceil_val) {
data_[i] = ceil_val;
num_changed++;
} else {
data_[i] = v.data_[i];
}
}
*ceiled_count = num_changed;
}
}
template<typename Real>
MatrixIndexT VectorBase<Real>::ApplyFloor(const VectorBase<Real> &floor_vec) {
KALDI_ASSERT(floor_vec.Dim() == dim_);
MatrixIndexT num_floored = 0;
for (MatrixIndexT i = 0; i < dim_; i++) {
if (data_[i] < floor_vec(i)) {
data_[i] = floor_vec(i);
num_floored++;
}
}
return num_floored;
}
template<typename Real>
Real VectorBase<Real>::ApplySoftMax() {
Real max = this->Max(), sum = 0.0;
for (MatrixIndexT i = 0; i < dim_; i++) {
sum += (data_[i] = Exp(data_[i] - max));
}
this->Scale(1.0 / sum);
return max + Log(sum);
}
template<typename Real>
Real VectorBase<Real>::ApplyLogSoftMax() {
Real max = this->Max(), sum = 0.0;
for (MatrixIndexT i = 0; i < dim_; i++) {
sum += Exp((data_[i] -= max));
}
sum = Log(sum);
this->Add(-1.0 * sum);
return max + sum;
}
#ifdef HAVE_MKL
template<>
void VectorBase<float>::Tanh(const VectorBase<float> &src) {
KALDI_ASSERT(dim_ == src.dim_);
vsTanh(dim_, src.data_, data_);
}
template<>
void VectorBase<double>::Tanh(const VectorBase<double> &src) {
KALDI_ASSERT(dim_ == src.dim_);
vdTanh(dim_, src.data_, data_);
}
#else
template<typename Real>
void VectorBase<Real>::Tanh(const VectorBase<Real> &src) {
KALDI_ASSERT(dim_ == src.dim_);
for (MatrixIndexT i = 0; i < dim_; i++) {
Real x = src.data_[i];
if (x > 0.0) {
Real inv_expx = Exp(-x);
x = -1.0 + 2.0 / (1.0 + inv_expx * inv_expx);
} else {
Real expx = Exp(x);
x = 1.0 - 2.0 / (1.0 + expx * expx);
}
data_[i] = x;
}
}
#endif
#ifdef HAVE_MKL
// Implementing sigmoid based on tanh.
template<>
void VectorBase<float>::Sigmoid(const VectorBase<float> &src) {
KALDI_ASSERT(dim_ == src.dim_);
this->CopyFromVec(src);
this->Scale(0.5);
vsTanh(dim_, data_, data_);
this->Add(1.0);
this->Scale(0.5);
}
template<>
void VectorBase<double>::Sigmoid(const VectorBase<double> &src) {
KALDI_ASSERT(dim_ == src.dim_);
this->CopyFromVec(src);
this->Scale(0.5);
vdTanh(dim_, data_, data_);
this->Add(1.0);
this->Scale(0.5);
}
#else
template<typename Real>
void VectorBase<Real>::Sigmoid(const VectorBase<Real> &src) {
KALDI_ASSERT(dim_ == src.dim_);
for (MatrixIndexT i = 0; i < dim_; i++) {
Real x = src.data_[i];
// We aim to avoid floating-point overflow here.
if (x > 0.0) {
x = 1.0 / (1.0 + Exp(-x));
} else {
Real ex = Exp(x);
x = ex / (ex + 1.0);
}
data_[i] = x;
}
}
#endif
template<typename Real>
void VectorBase<Real>::Add(Real c) {
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] += c;
}
}
template<typename Real>
void VectorBase<Real>::Scale(Real alpha) {
cblas_Xscal(dim_, alpha, data_, 1);
}
template<typename Real>
void VectorBase<Real>::MulElements(const VectorBase<Real> &v) {
KALDI_ASSERT(dim_ == v.dim_);
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] *= v.data_[i];
}
}
template<typename Real> // Set each element to y = (x == orig ? changed : x).
void VectorBase<Real>::ReplaceValue(Real orig, Real changed) {
Real *data = data_;
for (MatrixIndexT i = 0; i < dim_; i++)
if (data[i] == orig) data[i] = changed;
}
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::MulElements(const VectorBase<OtherReal> &v) {
KALDI_ASSERT(dim_ == v.Dim());
const OtherReal *other_ptr = v.Data();
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] *= other_ptr[i];
}
}
// instantiate template.
template
void VectorBase<float>::MulElements(const VectorBase<double> &v);
template
void VectorBase<double>::MulElements(const VectorBase<float> &v);
template<typename Real>
void VectorBase<Real>::AddVecVec(Real alpha, const VectorBase<Real> &v,
const VectorBase<Real> &r, Real beta) {
KALDI_ASSERT(v.data_ != this->data_ && r.data_ != this->data_);
// We pretend that v is a band-diagonal matrix.
KALDI_ASSERT(dim_ == v.dim_ && dim_ == r.dim_);
cblas_Xgbmv(kNoTrans, dim_, dim_, 0, 0, alpha, v.data_, 1,
r.data_, 1, beta, this->data_, 1);
}
template<typename Real>
void VectorBase<Real>::DivElements(const VectorBase<Real> &v) {
KALDI_ASSERT(dim_ == v.dim_);
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] /= v.data_[i];
}
}
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::DivElements(const VectorBase<OtherReal> &v) {
KALDI_ASSERT(dim_ == v.Dim());
const OtherReal *other_ptr = v.Data();
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] /= other_ptr[i];
}
}
// instantiate template.
template
void VectorBase<float>::DivElements(const VectorBase<double> &v);
template
void VectorBase<double>::DivElements(const VectorBase<float> &v);
template<typename Real>
void VectorBase<Real>::AddVecDivVec(Real alpha, const VectorBase<Real> &v,
const VectorBase<Real> &rr, Real beta) {
KALDI_ASSERT((dim_ == v.dim_ && dim_ == rr.dim_));
for (MatrixIndexT i = 0; i < dim_; i++) {
data_[i] = alpha * v.data_[i]/rr.data_[i] + beta * data_[i] ;
}
}
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::AddVec(const Real alpha, const VectorBase<OtherReal> &v) {
KALDI_ASSERT(dim_ == v.dim_);
// remove __restrict__ if it causes compilation problems.
Real *__restrict__ data = data_;
OtherReal *__restrict__ other_data = v.data_;
MatrixIndexT dim = dim_;
if (alpha != 1.0)
for (MatrixIndexT i = 0; i < dim; i++)
data[i] += alpha * other_data[i];
else
for (MatrixIndexT i = 0; i < dim; i++)
data[i] += other_data[i];
}
template
void VectorBase<float>::AddVec(const float alpha, const VectorBase<double> &v);
template
void VectorBase<double>::AddVec(const double alpha, const VectorBase<float> &v);
template<typename Real>
template<typename OtherReal>
void VectorBase<Real>::AddVec2(const Real alpha, const VectorBase<OtherReal> &v) {
KALDI_ASSERT(dim_ == v.dim_);
// remove __restrict__ if it causes compilation problems.
Real *__restrict__ data = data_;
OtherReal *__restrict__ other_data = v.data_;
MatrixIndexT dim = dim_;
if (alpha != 1.0)
for (MatrixIndexT i = 0; i < dim; i++)
data[i] += alpha * other_data[i] * other_data[i];
else
for (MatrixIndexT i = 0; i < dim; i++)
data[i] += other_data[i] * other_data[i];
}
template
void VectorBase<float>::AddVec2(const float alpha, const VectorBase<double> &v);
template
void VectorBase<double>::AddVec2(const double alpha, const VectorBase<float> &v);
template<typename Real>
void VectorBase<Real>::Read(std::istream & is, bool binary, bool add) {
if (add) {
Vector<Real> tmp(Dim());
tmp.Read(is, binary, false); // read without adding.
if (this->Dim() != tmp.Dim()) {
KALDI_ERR << "VectorBase::Read, size mismatch " << this->Dim()<<" vs. "<<tmp.Dim();
}
this->AddVec(1.0, tmp);
return;
} // now assume add == false.
// In order to avoid rewriting this, we just declare a Vector and
// use it to read the data, then copy.
Vector<Real> tmp;
tmp.Read(is, binary, false);
if (tmp.Dim() != Dim())
KALDI_ERR << "VectorBase<Real>::Read, size mismatch "
<< Dim() << " vs. " << tmp.Dim();
CopyFromVec(tmp);
}
template<typename Real>
void Vector<Real>::Read(std::istream & is, bool binary, bool add) {
if (add) {
Vector<Real> tmp(this->Dim());
tmp.Read(is, binary, false); // read without adding.
if (this->Dim() == 0) this->Resize(tmp.Dim());
if (this->Dim() != tmp.Dim()) {
KALDI_ERR << "Vector<Real>::Read, adding but dimensions mismatch "
<< this->Dim() << " vs. " << tmp.Dim();
}
this->AddVec(1.0, tmp);
return;
} // now assume add == false.
std::ostringstream specific_error;
MatrixIndexT pos_at_start = is.tellg();
if (binary) {
int peekval = Peek(is, binary);
const char *my_token = (sizeof(Real) == 4 ? "FV" : "DV");
char other_token_start = (sizeof(Real) == 4 ? 'D' : 'F');
if (peekval == other_token_start) { // need to instantiate the other type to read it.
typedef typename OtherReal<Real>::Real OtherType; // if Real == float, OtherType == double, and vice versa.
Vector<OtherType> other(this->Dim());
other.Read(is, binary, false); // add is false at this point.
if (this->Dim() != other.Dim()) this->Resize(other.Dim());
this->CopyFromVec(other);
return;
}
std::string token;
ReadToken(is, binary, &token);
if (token != my_token) {
if (token.length() > 20) token = token.substr(0, 17) + "...";
specific_error << ": Expected token " << my_token << ", got " << token;
goto bad;
}
int32 size;
ReadBasicType(is, binary, &size); // throws on error.
if ((MatrixIndexT)size != this->Dim()) this->Resize(size);
if (size > 0)
is.read(reinterpret_cast<char*>(this->data_), sizeof(Real)*size);
if (is.fail()) {
specific_error << "Error reading vector data (binary mode); truncated "
"stream? (size = " << size << ")";
goto bad;
}
return;
} else { // Text mode reading; format is " [ 1.1 2.0 3.4 ]\n"
std::string s;
is >> s;
// if ((s.compare("DV") == 0) || (s.compare("FV") == 0)) { // Back compatibility.
// is >> s; // get dimension
// is >> s; // get "["
// }
if (is.fail()) { specific_error << "EOF while trying to read vector."; goto bad; }
if (s.compare("[]") == 0) { Resize(0); return; } // tolerate this variant.
if (s.compare("[")) {
if (s.length() > 20) s = s.substr(0, 17) + "...";
specific_error << "Expected \"[\" but got " << s;
goto bad;
}
std::vector<Real> data;
while (1) {
int i = is.peek();
if (i == '-' || (i >= '0' && i <= '9')) { // common cases first.
Real r;
is >> r;
if (is.fail()) { specific_error << "Failed to read number."; goto bad; }
if (! std::isspace(is.peek()) && is.peek() != ']') {
specific_error << "Expected whitespace after number."; goto bad;
}
data.push_back(r);
// But don't eat whitespace... we want to check that it's not newlines
// which would be valid only for a matrix.
} else if (i == ' ' || i == '\t') {
is.get();
} else if (i == ']') {
is.get(); // eat the ']'
this->Resize(data.size());
for (size_t j = 0; j < data.size(); j++)
this->data_[j] = data[j];
i = is.peek();
if (static_cast<char>(i) == '\r') {
is.get();
is.get(); // get \r\n (must eat what we wrote)
} else if (static_cast<char>(i) == '\n') { is.get(); } // get \n (must eat what we wrote)
if (is.fail()) {
KALDI_WARN << "After end of vector data, read error.";
// we got the data we needed, so just warn for this error.
}
return; // success.
} else if (i == -1) {
specific_error << "EOF while reading vector data.";
goto bad;
} else if (i == '\n' || i == '\r') {
specific_error << "Newline found while reading vector (maybe it's a matrix?)";
goto bad;
} else {
is >> s; // read string.
if (!KALDI_STRCASECMP(s.c_str(), "inf") ||
!KALDI_STRCASECMP(s.c_str(), "infinity")) {
data.push_back(std::numeric_limits<Real>::infinity());
KALDI_WARN << "Reading infinite value into vector.";
} else if (!KALDI_STRCASECMP(s.c_str(), "nan")) {
data.push_back(std::numeric_limits<Real>::quiet_NaN());
KALDI_WARN << "Reading NaN value into vector.";
} else {
if (s.length() > 20) s = s.substr(0, 17) + "...";
specific_error << "Expecting numeric vector data, got " << s;
goto bad;
}
}
}
}
// we never reach this line (the while loop returns directly).
bad:
KALDI_ERR << "Failed to read vector from stream. " << specific_error.str()
<< " File position at start is "
<< pos_at_start<<", currently "<<is.tellg();
}
template<typename Real>
void VectorBase<Real>::Write(std::ostream & os, bool binary) const {
if (!os.good()) {
KALDI_ERR << "Failed to write vector to stream: stream not good";
}
if (binary) {
std::string my_token = (sizeof(Real) == 4 ? "FV" : "DV");
WriteToken(os, binary, my_token);
int32 size = Dim(); // make the size 32-bit on disk.
KALDI_ASSERT(Dim() == (MatrixIndexT) size);
WriteBasicType(os, binary, size);
os.write(reinterpret_cast<const char*>(Data()), sizeof(Real) * size);
} else {
os << " [ ";
for (MatrixIndexT i = 0; i < Dim(); i++)
os << (*this)(i) << " ";
os << "]\n";
}
if (!os.good())
KALDI_ERR << "Failed to write vector to stream";
}
template<typename Real>
void VectorBase<Real>::AddVec2(const Real alpha, const VectorBase<Real> &v) {
KALDI_ASSERT(dim_ == v.dim_);
for (MatrixIndexT i = 0; i < dim_; i++)
data_[i] += alpha * v.data_[i] * v.data_[i];
}
// this <-- beta*this + alpha*M*v.
template<typename Real>
void VectorBase<Real>::AddTpVec(const Real alpha, const TpMatrix<Real> &M,
const MatrixTransposeType trans,
const VectorBase<Real> &v,
const Real beta) {
KALDI_ASSERT(dim_ == v.dim_ && dim_ == M.NumRows());
if (beta == 0.0) {
if (&v != this) CopyFromVec(v);
MulTp(M, trans);
if (alpha != 1.0) Scale(alpha);
} else {
Vector<Real> tmp(v);
tmp.MulTp(M, trans);
if (beta != 1.0) Scale(beta); // *this <-- beta * *this
AddVec(alpha, tmp); // *this += alpha * M * v
}
}
template<typename Real>
Real VecMatVec(const VectorBase<Real> &v1, const MatrixBase<Real> &M,
const VectorBase<Real> &v2) {
KALDI_ASSERT(v1.Dim() == M.NumRows() && v2.Dim() == M.NumCols());
Vector<Real> vtmp(M.NumRows());
vtmp.AddMatVec(1.0, M, kNoTrans, v2, 0.0);
return VecVec(v1, vtmp);
}
template
float VecMatVec(const VectorBase<float> &v1, const MatrixBase<float> &M,
const VectorBase<float> &v2);
template
double VecMatVec(const VectorBase<double> &v1, const MatrixBase<double> &M,
const VectorBase<double> &v2);
template<typename Real>
void Vector<Real>::Swap(Vector<Real> *other) {
std::swap(this->data_, other->data_);
std::swap(this->dim_, other->dim_);
}
template<typename Real>
void VectorBase<Real>::AddDiagMat2(
Real alpha, const MatrixBase<Real> &M,
MatrixTransposeType trans, Real beta) {
if (trans == kNoTrans) {
KALDI_ASSERT(this->dim_ == M.NumRows());
MatrixIndexT rows = this->dim_, cols = M.NumCols(),
mat_stride = M.Stride();
Real *data = this->data_;
const Real *mat_data = M.Data();
for (MatrixIndexT i = 0; i < rows; i++, mat_data += mat_stride, data++)
*data = beta * *data + alpha * cblas_Xdot(cols,mat_data,1,mat_data,1);
} else {
KALDI_ASSERT(this->dim_ == M.NumCols());
MatrixIndexT rows = M.NumRows(), cols = this->dim_,
mat_stride = M.Stride();
Real *data = this->data_;
const Real *mat_data = M.Data();
for (MatrixIndexT i = 0; i < cols; i++, mat_data++, data++)
*data = beta * *data + alpha * cblas_Xdot(rows, mat_data, mat_stride,
mat_data, mat_stride);
}
}
template<typename Real>
void VectorBase<Real>::AddDiagMatMat(
Real alpha,
const MatrixBase<Real> &M, MatrixTransposeType transM,
const MatrixBase<Real> &N, MatrixTransposeType transN,
Real beta) {
MatrixIndexT dim = this->dim_,
M_col_dim = (transM == kTrans ? M.NumRows() : M.NumCols()),
N_row_dim = (transN == kTrans ? N.NumCols() : N.NumRows());
KALDI_ASSERT(M_col_dim == N_row_dim); // this is the dimension we sum over
MatrixIndexT M_row_stride = M.Stride(), M_col_stride = 1;
if (transM == kTrans) std::swap(M_row_stride, M_col_stride);
MatrixIndexT N_row_stride = N.Stride(), N_col_stride = 1;
if (transN == kTrans) std::swap(N_row_stride, N_col_stride);
Real *data = this->data_;
const Real *Mdata = M.Data(), *Ndata = N.Data();
for (MatrixIndexT i = 0; i < dim; i++, Mdata += M_row_stride, Ndata += N_col_stride, data++) {
*data = beta * *data + alpha * cblas_Xdot(M_col_dim, Mdata, M_col_stride, Ndata, N_row_stride);
}
}
template class Vector<float>;
template class Vector<double>;
template class VectorBase<float>;
template class VectorBase<double>;
} // namespace kaldi