kaldi-vector.h
22.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
// matrix/kaldi-vector.h
// Copyright 2009-2012 Ondrej Glembek; Microsoft Corporation; Lukas Burget;
// Saarland University (Author: Arnab Ghoshal);
// Ariya Rastrow; Petr Schwarz; Yanmin Qian;
// Karel Vesely; Go Vivace Inc.; Arnab Ghoshal
// Wei Shi;
// 2015 Guoguo Chen
// 2017 Daniel Galvez
// 2019 Yiwen Shao
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_MATRIX_KALDI_VECTOR_H_
#define KALDI_MATRIX_KALDI_VECTOR_H_ 1
#include "matrix/matrix-common.h"
namespace kaldi {
/// \addtogroup matrix_group
/// @{
/// Provides a vector abstraction class.
/// This class provides a way to work with vectors in kaldi.
/// It encapsulates basic operations and memory optimizations.
template<typename Real>
class VectorBase {
public:
/// Set vector to all zeros.
void SetZero();
/// Returns true if matrix is all zeros.
bool IsZero(Real cutoff = 1.0e-06) const; // replace magic number
/// Set all members of a vector to a specified value.
void Set(Real f);
/// Set vector to random normally-distributed noise.
void SetRandn();
/// Sets to numbers uniformly distributed on (0,1)
void SetRandUniform();
/// This function returns a random index into this vector,
/// chosen with probability proportional to the corresponding
/// element. Requires that this->Min() >= 0 and this->Sum() > 0.
MatrixIndexT RandCategorical() const;
/// Returns the dimension of the vector.
inline MatrixIndexT Dim() const { return dim_; }
/// Returns the size in memory of the vector, in bytes.
inline MatrixIndexT SizeInBytes() const { return (dim_*sizeof(Real)); }
/// Returns a pointer to the start of the vector's data.
inline Real* Data() { return data_; }
/// Returns a pointer to the start of the vector's data (const).
inline const Real* Data() const { return data_; }
/// Indexing operator (const).
inline Real operator() (MatrixIndexT i) const {
KALDI_PARANOID_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(dim_));
return *(data_ + i);
}
/// Indexing operator (non-const).
inline Real & operator() (MatrixIndexT i) {
KALDI_PARANOID_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(dim_));
return *(data_ + i);
}
/** @brief Returns a sub-vector of a vector (a range of elements).
* @param o [in] Origin, 0 < o < Dim()
* @param l [in] Length 0 < l < Dim()-o
* @return A SubVector object that aliases the data of the Vector object.
* See @c SubVector class for details */
SubVector<Real> Range(const MatrixIndexT o, const MatrixIndexT l) {
return SubVector<Real>(*this, o, l);
}
/** @brief Returns a const sub-vector of a vector (a range of elements).
* @param o [in] Origin, 0 < o < Dim()
* @param l [in] Length 0 < l < Dim()-o
* @return A SubVector object that aliases the data of the Vector object.
* See @c SubVector class for details */
const SubVector<Real> Range(const MatrixIndexT o,
const MatrixIndexT l) const {
return SubVector<Real>(*this, o, l);
}
/// Copy data from another vector (must match own size).
void CopyFromVec(const VectorBase<Real> &v);
/// Copy data from a SpMatrix or TpMatrix (must match own size).
template<typename OtherReal>
void CopyFromPacked(const PackedMatrix<OtherReal> &M);
/// Copy data from another vector of different type (double vs. float)
template<typename OtherReal>
void CopyFromVec(const VectorBase<OtherReal> &v);
/// Copy from CuVector. This is defined in ../cudamatrix/cu-vector.h
template<typename OtherReal>
void CopyFromVec(const CuVectorBase<OtherReal> &v);
/// Applies floor to all elements. Returns number of elements
/// floored in floored_count if it is non-null.
void Floor(const VectorBase<Real> &v, Real floor_val, MatrixIndexT *floored_count = nullptr);
/// Applies ceiling to all elements. Returns number of elements
/// changed in ceiled_count if it is non-null.
void Ceiling(const VectorBase<Real> &v, Real ceil_val, MatrixIndexT *ceiled_count = nullptr);
void Pow(const VectorBase<Real> &v, Real power);
/// Apply natural log to all elements. Throw if any element of
/// the vector is negative (but doesn't complain about zero; the
/// log will be -infinity
void ApplyLog();
/// Apply natural log to another vector and put result in *this.
void ApplyLogAndCopy(const VectorBase<Real> &v);
/// Apply exponential to each value in vector.
void ApplyExp();
/// Take absolute value of each of the elements
void ApplyAbs();
/// Applies floor to all elements. Returns number of elements
/// floored in floored_count if it is non-null.
inline void ApplyFloor(Real floor_val, MatrixIndexT *floored_count = nullptr) {
this->Floor(*this, floor_val, floored_count);
};
/// Applies ceiling to all elements. Returns number of elements
/// changed in ceiled_count if it is non-null.
inline void ApplyCeiling(Real ceil_val, MatrixIndexT *ceiled_count = nullptr) {
this->Ceiling(*this, ceil_val, ceiled_count);
};
/// Applies floor to all elements. Returns number of elements floored.
MatrixIndexT ApplyFloor(const VectorBase<Real> &floor_vec);
/// Apply soft-max to vector and return normalizer (log sum of exponentials).
/// This is the same as: \f$ x(i) = exp(x(i)) / \sum_i exp(x(i)) \f$
Real ApplySoftMax();
/// Applies log soft-max to vector and returns normalizer (log sum of
/// exponentials).
/// This is the same as: \f$ x(i) = x(i) - log(\sum_i exp(x(i))) \f$
Real ApplyLogSoftMax();
/// Sets each element of *this to the tanh of the corresponding element of "src".
void Tanh(const VectorBase<Real> &src);
/// Sets each element of *this to the sigmoid function of the corresponding
/// element of "src".
void Sigmoid(const VectorBase<Real> &src);
/// Take all elements of vector to a power.
inline void ApplyPow(Real power) {
this->Pow(*this, power);
};
/// Take the absolute value of all elements of a vector to a power.
/// Include the sign of the input element if include_sign == true.
/// If power is negative and the input value is zero, the output is set zero.
void ApplyPowAbs(Real power, bool include_sign=false);
/// Compute the p-th norm of the vector.
Real Norm(Real p) const;
/// Returns true if ((*this)-other).Norm(2.0) <= tol * (*this).Norm(2.0).
bool ApproxEqual(const VectorBase<Real> &other, float tol = 0.01) const;
/// Invert all elements.
void InvertElements();
/// Add vector : *this = *this + alpha * rv (with casting between floats and
/// doubles)
template<typename OtherReal>
void AddVec(const Real alpha, const VectorBase<OtherReal> &v);
/// Add vector : *this = *this + alpha * rv^2 [element-wise squaring].
void AddVec2(const Real alpha, const VectorBase<Real> &v);
/// Add vector : *this = *this + alpha * rv^2 [element-wise squaring],
/// with casting between floats and doubles.
template<typename OtherReal>
void AddVec2(const Real alpha, const VectorBase<OtherReal> &v);
/// Add matrix times vector : this <-- beta*this + alpha*M*v.
/// Calls BLAS GEMV.
void AddMatVec(const Real alpha, const MatrixBase<Real> &M,
const MatrixTransposeType trans, const VectorBase<Real> &v,
const Real beta); // **beta previously defaulted to 0.0**
/// This is as AddMatVec, except optimized for where v contains a lot
/// of zeros.
void AddMatSvec(const Real alpha, const MatrixBase<Real> &M,
const MatrixTransposeType trans, const VectorBase<Real> &v,
const Real beta); // **beta previously defaulted to 0.0**
/// Add symmetric positive definite matrix times vector:
/// this <-- beta*this + alpha*M*v. Calls BLAS SPMV.
void AddSpVec(const Real alpha, const SpMatrix<Real> &M,
const VectorBase<Real> &v, const Real beta); // **beta previously defaulted to 0.0**
/// Add triangular matrix times vector: this <-- beta*this + alpha*M*v.
/// Works even if rv == *this.
void AddTpVec(const Real alpha, const TpMatrix<Real> &M,
const MatrixTransposeType trans, const VectorBase<Real> &v,
const Real beta); // **beta previously defaulted to 0.0**
/// Set each element to y = (x == orig ? changed : x).
void ReplaceValue(Real orig, Real changed);
/// Multipy element-by-element by another vector.
void MulElements(const VectorBase<Real> &v);
/// Multipy element-by-element by another vector of different type.
template<typename OtherReal>
void MulElements(const VectorBase<OtherReal> &v);
/// Divide element-by-element by a vector.
void DivElements(const VectorBase<Real> &v);
/// Divide element-by-element by a vector of different type.
template<typename OtherReal>
void DivElements(const VectorBase<OtherReal> &v);
/// Add a constant to each element of a vector.
void Add(Real c);
/// Add element-by-element product of vectlrs:
// this <-- alpha * v .* r + beta*this .
void AddVecVec(Real alpha, const VectorBase<Real> &v,
const VectorBase<Real> &r, Real beta);
/// Add element-by-element quotient of two vectors.
/// this <---- alpha*v/r + beta*this
void AddVecDivVec(Real alpha, const VectorBase<Real> &v,
const VectorBase<Real> &r, Real beta);
/// Multiplies all elements by this constant.
void Scale(Real alpha);
/// Multiplies this vector by lower-triangular matrix: *this <-- *this *M
void MulTp(const TpMatrix<Real> &M, const MatrixTransposeType trans);
/// If trans == kNoTrans, solves M x = b, where b is the value of *this at input
/// and x is the value of *this at output.
/// If trans == kTrans, solves M' x = b.
/// Does not test for M being singular or near-singular, so test it before
/// calling this routine.
void Solve(const TpMatrix<Real> &M, const MatrixTransposeType trans);
/// Performs a row stack of the matrix M
void CopyRowsFromMat(const MatrixBase<Real> &M);
template<typename OtherReal>
void CopyRowsFromMat(const MatrixBase<OtherReal> &M);
/// The following is implemented in ../cudamatrix/cu-matrix.cc
void CopyRowsFromMat(const CuMatrixBase<Real> &M);
/// Performs a column stack of the matrix M
void CopyColsFromMat(const MatrixBase<Real> &M);
/// Extracts a row of the matrix M. Could also do this with
/// this->Copy(M[row]).
void CopyRowFromMat(const MatrixBase<Real> &M, MatrixIndexT row);
/// Extracts a row of the matrix M with type conversion.
template<typename OtherReal>
void CopyRowFromMat(const MatrixBase<OtherReal> &M, MatrixIndexT row);
/// Extracts a row of the symmetric matrix S.
template<typename OtherReal>
void CopyRowFromSp(const SpMatrix<OtherReal> &S, MatrixIndexT row);
/// Extracts a column of the matrix M.
template<typename OtherReal>
void CopyColFromMat(const MatrixBase<OtherReal> &M , MatrixIndexT col);
/// Extracts the diagonal of the matrix M.
void CopyDiagFromMat(const MatrixBase<Real> &M);
/// Extracts the diagonal of a packed matrix M; works for Sp or Tp.
void CopyDiagFromPacked(const PackedMatrix<Real> &M);
/// Extracts the diagonal of a symmetric matrix.
inline void CopyDiagFromSp(const SpMatrix<Real> &M) { CopyDiagFromPacked(M); }
/// Extracts the diagonal of a triangular matrix.
inline void CopyDiagFromTp(const TpMatrix<Real> &M) { CopyDiagFromPacked(M); }
/// Returns the maximum value of any element, or -infinity for the empty vector.
Real Max() const;
/// Returns the maximum value of any element, and the associated index.
/// Error if vector is empty.
Real Max(MatrixIndexT *index) const;
/// Returns the minimum value of any element, or +infinity for the empty vector.
Real Min() const;
/// Returns the minimum value of any element, and the associated index.
/// Error if vector is empty.
Real Min(MatrixIndexT *index) const;
/// Returns sum of the elements
Real Sum() const;
/// Returns sum of the logs of the elements. More efficient than
/// just taking log of each. Will return NaN if any elements are
/// negative.
Real SumLog() const;
/// Does *this = alpha * (sum of rows of M) + beta * *this.
void AddRowSumMat(Real alpha, const MatrixBase<Real> &M, Real beta = 1.0);
/// Does *this = alpha * (sum of columns of M) + beta * *this.
void AddColSumMat(Real alpha, const MatrixBase<Real> &M, Real beta = 1.0);
/// Add the diagonal of a matrix times itself:
/// *this = diag(M M^T) + beta * *this (if trans == kNoTrans), or
/// *this = diag(M^T M) + beta * *this (if trans == kTrans).
void AddDiagMat2(Real alpha, const MatrixBase<Real> &M,
MatrixTransposeType trans = kNoTrans, Real beta = 1.0);
/// Add the diagonal of a matrix product: *this = diag(M N), assuming the
/// "trans" arguments are both kNoTrans; for transpose arguments, it behaves
/// as you would expect.
void AddDiagMatMat(Real alpha, const MatrixBase<Real> &M, MatrixTransposeType transM,
const MatrixBase<Real> &N, MatrixTransposeType transN,
Real beta = 1.0);
/// Returns log(sum(exp())) without exp overflow
/// If prune > 0.0, ignores terms less than the max - prune.
/// [Note: in future, if prune = 0.0, it will take the max.
/// For now, use -1 if you don't want it to prune.]
Real LogSumExp(Real prune = -1.0) const;
/// Reads from C++ stream (option to add to existing contents).
/// Throws exception on failure
void Read(std::istream & in, bool binary, bool add = false);
/// Writes to C++ stream (option to write in binary).
void Write(std::ostream &Out, bool binary) const;
friend class VectorBase<double>;
friend class VectorBase<float>;
friend class CuVectorBase<Real>;
friend class CuVector<Real>;
protected:
/// Destructor; does not deallocate memory, this is handled by child classes.
/// This destructor is protected so this object can only be
/// deleted via a child.
~VectorBase() {}
/// Empty initializer, corresponds to vector of zero size.
explicit VectorBase(): data_(NULL), dim_(0) {
KALDI_ASSERT_IS_FLOATING_TYPE(Real);
}
// Took this out since it is not currently used, and it is possible to create
// objects where the allocated memory is not the same size as dim_ : Arnab
// /// Initializer from a pointer and a size; keeps the pointer internally
// /// (ownership or non-ownership depends on the child class).
// explicit VectorBase(Real* data, MatrixIndexT dim)
// : data_(data), dim_(dim) {}
// Arnab : made this protected since it is unsafe too.
/// Load data into the vector: sz must match own size.
void CopyFromPtr(const Real* Data, MatrixIndexT sz);
/// data memory area
Real* data_;
/// dimension of vector
MatrixIndexT dim_;
KALDI_DISALLOW_COPY_AND_ASSIGN(VectorBase);
}; // class VectorBase
/** @brief A class representing a vector.
*
* This class provides a way to work with vectors in kaldi.
* It encapsulates basic operations and memory optimizations. */
template<typename Real>
class Vector: public VectorBase<Real> {
public:
/// Constructor that takes no arguments. Initializes to empty.
Vector(): VectorBase<Real>() {}
/// Constructor with specific size. Sets to all-zero by default
/// if set_zero == false, memory contents are undefined.
explicit Vector(const MatrixIndexT s,
MatrixResizeType resize_type = kSetZero)
: VectorBase<Real>() { Resize(s, resize_type); }
/// Copy constructor from CUDA vector
/// This is defined in ../cudamatrix/cu-vector.h
template<typename OtherReal>
explicit Vector(const CuVectorBase<OtherReal> &cu);
/// Copy constructor. The need for this is controversial.
Vector(const Vector<Real> &v) : VectorBase<Real>() { // (cannot be explicit)
Resize(v.Dim(), kUndefined);
this->CopyFromVec(v);
}
/// Copy-constructor from base-class, needed to copy from SubVector.
explicit Vector(const VectorBase<Real> &v) : VectorBase<Real>() {
Resize(v.Dim(), kUndefined);
this->CopyFromVec(v);
}
/// Type conversion constructor.
template<typename OtherReal>
explicit Vector(const VectorBase<OtherReal> &v): VectorBase<Real>() {
Resize(v.Dim(), kUndefined);
this->CopyFromVec(v);
}
// Took this out since it is unsafe : Arnab
// /// Constructor from a pointer and a size; copies the data to a location
// /// it owns.
// Vector(const Real* Data, const MatrixIndexT s): VectorBase<Real>() {
// Resize(s);
// CopyFromPtr(Data, s);
// }
/// Swaps the contents of *this and *other. Shallow swap.
void Swap(Vector<Real> *other);
/// Destructor. Deallocates memory.
~Vector() { Destroy(); }
/// Read function using C++ streams. Can also add to existing contents
/// of matrix.
void Read(std::istream & in, bool binary, bool add = false);
/// Set vector to a specified size (can be zero).
/// The value of the new data depends on resize_type:
/// -if kSetZero, the new data will be zero
/// -if kUndefined, the new data will be undefined
/// -if kCopyData, the new data will be the same as the old data in any
/// shared positions, and zero elsewhere.
/// This function takes time proportional to the number of data elements.
void Resize(MatrixIndexT length, MatrixResizeType resize_type = kSetZero);
/// Remove one element and shifts later elements down.
void RemoveElement(MatrixIndexT i);
/// Assignment operator, protected so it can only be used by std::vector
Vector<Real> &operator = (const Vector<Real> &other) {
Resize(other.Dim(), kUndefined);
this->CopyFromVec(other);
return *this;
}
/// Assignment operator that takes VectorBase.
Vector<Real> &operator = (const VectorBase<Real> &other) {
Resize(other.Dim(), kUndefined);
this->CopyFromVec(other);
return *this;
}
private:
/// Init assumes the current contents of the class are invalid (i.e. junk or
/// has already been freed), and it sets the vector to newly allocated memory
/// with the specified dimension. dim == 0 is acceptable. The memory contents
/// pointed to by data_ will be undefined.
void Init(const MatrixIndexT dim);
/// Destroy function, called internally.
void Destroy();
};
/// Represents a non-allocating general vector which can be defined
/// as a sub-vector of higher-level vector [or as the row of a matrix].
template<typename Real>
class SubVector : public VectorBase<Real> {
public:
/// Constructor from a Vector or SubVector.
/// SubVectors are not const-safe and it's very hard to make them
/// so for now we just give up. This function contains const_cast.
SubVector(const VectorBase<Real> &t, const MatrixIndexT origin,
const MatrixIndexT length) : VectorBase<Real>() {
// following assert equiv to origin>=0 && length>=0 &&
// origin+length <= rt.dim_
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(origin)+
static_cast<UnsignedMatrixIndexT>(length) <=
static_cast<UnsignedMatrixIndexT>(t.Dim()));
VectorBase<Real>::data_ = const_cast<Real*> (t.Data()+origin);
VectorBase<Real>::dim_ = length;
}
/// This constructor initializes the vector to point at the contents
/// of this packed matrix (SpMatrix or TpMatrix).
SubVector(const PackedMatrix<Real> &M) {
VectorBase<Real>::data_ = const_cast<Real*> (M.Data());
VectorBase<Real>::dim_ = (M.NumRows()*(M.NumRows()+1))/2;
}
/// Copy constructor
SubVector(const SubVector &other) : VectorBase<Real> () {
// this copy constructor needed for Range() to work in base class.
VectorBase<Real>::data_ = other.data_;
VectorBase<Real>::dim_ = other.dim_;
}
/// Constructor from a pointer to memory and a length. Keeps a pointer
/// to the data but does not take ownership (will never delete).
/// Caution: this constructor enables you to evade const constraints.
SubVector(const Real *data, MatrixIndexT length) : VectorBase<Real> () {
VectorBase<Real>::data_ = const_cast<Real*>(data);
VectorBase<Real>::dim_ = length;
}
/// This operation does not preserve const-ness, so be careful.
SubVector(const MatrixBase<Real> &matrix, MatrixIndexT row) {
VectorBase<Real>::data_ = const_cast<Real*>(matrix.RowData(row));
VectorBase<Real>::dim_ = matrix.NumCols();
}
~SubVector() {} ///< Destructor (does nothing; no pointers are owned here).
private:
/// Disallow assignment operator.
SubVector & operator = (const SubVector &other) {}
};
/// @} end of "addtogroup matrix_group"
/// \addtogroup matrix_funcs_io
/// @{
/// Output to a C++ stream. Non-binary by default (use Write for
/// binary output).
template<typename Real>
std::ostream & operator << (std::ostream & out, const VectorBase<Real> & v);
/// Input from a C++ stream. Will automatically read text or
/// binary data from the stream.
template<typename Real>
std::istream & operator >> (std::istream & in, VectorBase<Real> & v);
/// Input from a C++ stream. Will automatically read text or
/// binary data from the stream.
template<typename Real>
std::istream & operator >> (std::istream & in, Vector<Real> & v);
/// @} end of \addtogroup matrix_funcs_io
/// \addtogroup matrix_funcs_scalar
/// @{
template<typename Real>
bool ApproxEqual(const VectorBase<Real> &a,
const VectorBase<Real> &b, Real tol = 0.01) {
return a.ApproxEqual(b, tol);
}
template<typename Real>
inline void AssertEqual(VectorBase<Real> &a, VectorBase<Real> &b,
float tol = 0.01) {
KALDI_ASSERT(a.ApproxEqual(b, tol));
}
/// Returns dot product between v1 and v2.
template<typename Real>
Real VecVec(const VectorBase<Real> &v1, const VectorBase<Real> &v2);
template<typename Real, typename OtherReal>
Real VecVec(const VectorBase<Real> &v1, const VectorBase<OtherReal> &v2);
/// Returns \f$ v_1^T M v_2 \f$ .
/// Not as efficient as it could be where v1 == v2.
template<typename Real>
Real VecMatVec(const VectorBase<Real> &v1, const MatrixBase<Real> &M,
const VectorBase<Real> &v2);
/// @} End of "addtogroup matrix_funcs_scalar"
} // namespace kaldi
// we need to include the implementation
#include "matrix/kaldi-vector-inl.h"
#endif // KALDI_MATRIX_KALDI_VECTOR_H_