sp-matrix.h 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
// matrix/sp-matrix.h

// Copyright 2009-2011   Ondrej Glembek;  Microsoft Corporation;  Lukas Burget;
//                       Saarland University;  Ariya Rastrow;  Yanmin Qian;
//                       Jan Silovsky

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at

//  http://www.apache.org/licenses/LICENSE-2.0

// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_MATRIX_SP_MATRIX_H_
#define KALDI_MATRIX_SP_MATRIX_H_

#include <algorithm>
#include <vector>

#include "matrix/packed-matrix.h"

namespace kaldi {


/// \addtogroup matrix_group
/// @{
template<typename Real> class SpMatrix;


/**
 * @brief Packed symetric matrix class
*/
template<typename Real>
class SpMatrix : public PackedMatrix<Real> {
  friend class CuSpMatrix<Real>;
 public:
  // so it can use our assignment operator.
  friend class std::vector<Matrix<Real> >;

  SpMatrix(): PackedMatrix<Real>() {}

  /// Copy constructor from CUDA version of SpMatrix
  /// This is defined in ../cudamatrix/cu-sp-matrix.h

  explicit SpMatrix(const CuSpMatrix<Real> &cu);

  explicit SpMatrix(MatrixIndexT r, MatrixResizeType resize_type = kSetZero)
      : PackedMatrix<Real>(r, resize_type) {}

  SpMatrix(const SpMatrix<Real> &orig)
      : PackedMatrix<Real>(orig) {}

  template<typename OtherReal>
  explicit SpMatrix(const SpMatrix<OtherReal> &orig)
      : PackedMatrix<Real>(orig) {}

#ifdef KALDI_PARANOID
  explicit SpMatrix(const MatrixBase<Real> & orig,
                    SpCopyType copy_type = kTakeMeanAndCheck)
      : PackedMatrix<Real>(orig.NumRows(), kUndefined) {
    CopyFromMat(orig, copy_type);
  }
#else
  explicit SpMatrix(const MatrixBase<Real> & orig,
                    SpCopyType copy_type = kTakeMean)
      : PackedMatrix<Real>(orig.NumRows(), kUndefined) {
    CopyFromMat(orig, copy_type);
  }
#endif

  /// Shallow swap.
  void Swap(SpMatrix *other);

  inline void Resize(MatrixIndexT nRows, MatrixResizeType resize_type = kSetZero) {
    PackedMatrix<Real>::Resize(nRows, resize_type);
  }

  void CopyFromSp(const SpMatrix<Real> &other) {
    PackedMatrix<Real>::CopyFromPacked(other);
  }

  template<typename OtherReal>
  void CopyFromSp(const SpMatrix<OtherReal> &other) {
    PackedMatrix<Real>::CopyFromPacked(other);
  }

#ifdef KALDI_PARANOID
  void CopyFromMat(const MatrixBase<Real> &orig,
                   SpCopyType copy_type = kTakeMeanAndCheck);
#else  // different default arg if non-paranoid mode.
  void CopyFromMat(const MatrixBase<Real> &orig,
                   SpCopyType copy_type = kTakeMean);
#endif

  inline Real operator() (MatrixIndexT r, MatrixIndexT c) const {
    // if column is less than row, then swap these as matrix is stored
    // as upper-triangular...  only allowed for const matrix object.
    if (static_cast<UnsignedMatrixIndexT>(c) >
        static_cast<UnsignedMatrixIndexT>(r))
      std::swap(c, r);
    // c<=r now so don't have to check c.
    KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(r) <
                 static_cast<UnsignedMatrixIndexT>(this->num_rows_));
    return *(this->data_ + (r*(r+1)) / 2 + c);
    // Duplicating code from PackedMatrix.h
  }

  inline Real &operator() (MatrixIndexT r, MatrixIndexT c) {
    if (static_cast<UnsignedMatrixIndexT>(c) >
        static_cast<UnsignedMatrixIndexT>(r))
      std::swap(c, r);
    // c<=r now so don't have to check c.
    KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(r) <
                 static_cast<UnsignedMatrixIndexT>(this->num_rows_));
    return *(this->data_ + (r * (r + 1)) / 2 + c);
    // Duplicating code from PackedMatrix.h
  }

  SpMatrix<Real>& operator=(const SpMatrix<Real> &other) {
    PackedMatrix<Real>::operator=(other);
    return *this;
  }

  using PackedMatrix<Real>::Scale;

  /// matrix inverse.
  /// if inverse_needed = false, will fill matrix with garbage.
  /// (only useful if logdet wanted).
  void Invert(Real *logdet = NULL, Real *det_sign= NULL,
              bool inverse_needed = true);

  // Below routine does inversion in double precision,
  // even for single-precision object.
  void InvertDouble(Real *logdet = NULL, Real *det_sign = NULL,
                    bool inverse_needed = true);

  /// Returns maximum ratio of singular values.
  inline Real Cond() const {
    Matrix<Real> tmp(*this);
    return tmp.Cond();
  }

  /// Takes matrix to a fraction power via Svd.
  /// Will throw exception if matrix is not positive semidefinite
  /// (to within a tolerance)
  void ApplyPow(Real exponent);

  /// This is the version of SVD that we implement for symmetric positive
  /// definite matrices.  This exists for historical reasons; right now its
  /// internal implementation is the same as Eig().  It computes the eigenvalue
  /// decomposition (*this) = P * diag(s) * P^T with P orthogonal.  Will throw
  /// exception if input is not positive semidefinite to within a tolerance.
  void SymPosSemiDefEig(VectorBase<Real> *s, MatrixBase<Real> *P,
                        Real tolerance = 0.001) const;

  /// Solves the symmetric eigenvalue problem: at end we should have (*this) = P
  /// * diag(s) * P^T.  We solve the problem using the symmetric QR method.
  /// P may be NULL.
  /// Implemented in qr.cc.
  /// If you need the eigenvalues sorted, the function SortSvd declared in
  /// kaldi-matrix is suitable.
  void Eig(VectorBase<Real> *s, MatrixBase<Real> *P = NULL) const;

  /// This function gives you, approximately, the largest eigenvalues of the
  /// symmetric matrix and the corresponding eigenvectors.  (largest meaning,
  /// further from zero).  It does this by doing a SVD within the Krylov
  /// subspace generated by this matrix and a random vector.  This is
  /// a form of the Lanczos method with complete reorthogonalization, followed
  /// by SVD within a smaller dimension ("lanczos_dim").
  ///
  /// If *this is m by m, s should be of dimension n and P should be of
  /// dimension m by n, with n <= m.  The *columns* of P are the approximate
  /// eigenvectors; P * diag(s) * P^T would be a low-rank reconstruction of
  /// *this.  The columns of P will be orthogonal, and the elements of s will be
  /// the eigenvalues of *this projected into that subspace, but beyond that
  /// there are no exact guarantees.  (This is because the convergence of this
  /// method is statistical).  Note: it only makes sense to use this
  /// method if you are in very high dimension and n is substantially smaller
  /// than m: for example, if you want the 100 top eigenvalues of a 10k by 10k
  /// matrix.  This function calls Rand() to initialize the lanczos
  /// iterations and also for restarting.
  /// If lanczos_dim is zero, it will default to the greater of:
  /// s->Dim() + 50 or s->Dim() + s->Dim()/2, but not more than this->Dim().
  /// If lanczos_dim == this->Dim(), you might as well just call the function
  /// Eig() since the result will be the same, and Eig() would be faster; the
  /// whole point of this function is to reduce the dimension of the SVD
  /// computation.
  void TopEigs(VectorBase<Real> *s, MatrixBase<Real> *P,
               MatrixIndexT lanczos_dim = 0) const;


  /// Returns the maximum of the absolute values of any of the
  /// eigenvalues.
  Real MaxAbsEig() const;

  void PrintEigs(const char *name) {
    Vector<Real> s((*this).NumRows());
    Matrix<Real> P((*this).NumRows(), (*this).NumCols());
    SymPosSemiDefEig(&s, &P);
    KALDI_LOG << "PrintEigs: " << name << ": " << s;
  }

  bool IsPosDef() const;  // returns true if Cholesky succeeds.
  void AddSp(const Real alpha, const SpMatrix<Real> &Ma) {
    this->AddPacked(alpha, Ma);
  }

  /// Computes log determinant but only for +ve-def matrices
  /// (it uses Cholesky).
  /// If matrix is not +ve-def, it will throw an exception
  /// was LogPDDeterminant()
  Real LogPosDefDet() const;

  Real LogDet(Real *det_sign = NULL) const;

  /// rank-one update, this <-- this + alpha v v'
  template<typename OtherReal>
  void AddVec2(const Real alpha, const VectorBase<OtherReal> &v);

  /// rank-two update, this <-- this + alpha (v w' + w v').
  void AddVecVec(const Real alpha, const VectorBase<Real> &v,
                 const VectorBase<Real> &w);

  /// Does *this = beta * *thi + alpha * diag(v) * S * diag(v)
  void AddVec2Sp(const Real alpha, const VectorBase<Real> &v,
                 const SpMatrix<Real> &S, const Real beta);

  /// diagonal update, this <-- this + diag(v)
  template<typename OtherReal>
  void AddDiagVec(const Real alpha, const VectorBase<OtherReal> &v);

  /// rank-N update:
  /// if (transM == kNoTrans)
  /// (*this) = beta*(*this) + alpha * M * M^T,
  /// or  (if transM == kTrans)
  ///  (*this) = beta*(*this) + alpha * M^T * M
  /// Note: beta used to default to 0.0.
  void AddMat2(const Real alpha, const MatrixBase<Real> &M,
               MatrixTransposeType transM, const Real beta);

  /// Extension of rank-N update:
  /// this <-- beta*this  +  alpha * M * A * M^T.
  /// (*this) and A are allowed to be the same.
  /// If transM == kTrans, then we do it as M^T * A * M.
  void AddMat2Sp(const Real alpha, const MatrixBase<Real> &M,
                 MatrixTransposeType transM, const SpMatrix<Real> &A,
                 const Real beta = 0.0);

  /// This is a version of AddMat2Sp specialized for when M is fairly sparse.
  /// This was required for making the raw-fMLLR code efficient.
  void AddSmat2Sp(const Real alpha, const MatrixBase<Real> &M,
                  MatrixTransposeType transM, const SpMatrix<Real> &A,
                  const Real beta = 0.0);

  /// The following function does:
  /// this <-- beta*this  +  alpha * T * A * T^T.
  /// (*this) and A are allowed to be the same.
  /// If transM == kTrans, then we do it as alpha * T^T * A * T.
  /// Currently it just calls AddMat2Sp, but if needed we
  /// can implement it more efficiently.
  void AddTp2Sp(const Real alpha, const TpMatrix<Real> &T,
                MatrixTransposeType transM, const SpMatrix<Real> &A,
                const Real beta = 0.0);

  /// The following function does:
  /// this <-- beta*this  +  alpha * T * T^T.
  /// (*this) and A are allowed to be the same.
  /// If transM == kTrans, then we do it as alpha * T^T *  T
  /// Currently it just calls AddMat2, but if needed we
  /// can implement it more efficiently.
  void AddTp2(const Real alpha, const TpMatrix<Real> &T,
              MatrixTransposeType transM, const Real beta = 0.0);

  /// Extension of rank-N update:
  /// this <-- beta*this + alpha * M * diag(v) * M^T.
  /// if transM == kTrans, then
  /// this <-- beta*this + alpha * M^T * diag(v) * M.
  void AddMat2Vec(const Real alpha, const MatrixBase<Real> &M,
                  MatrixTransposeType transM, const VectorBase<Real> &v,
                  const Real beta = 0.0);


  ///  Floors this symmetric matrix to the matrix
  /// alpha * Floor, where the matrix Floor is positive
  /// definite.
  /// It is floored in the sense that after flooring,
  ///  x^T (*this) x  >= x^T (alpha*Floor) x.
  /// This is accomplished using an Svd.  It will crash
  /// if Floor is not positive definite. Returns the number of
  /// elements that were floored.
  int ApplyFloor(const SpMatrix<Real> &Floor, Real alpha = 1.0,
                 bool verbose = false);

  /// Floor: Given a positive semidefinite matrix, floors the eigenvalues
  /// to the specified quantity.  A previous version of this function had
  /// a tolerance which is now no longer needed since we have code to
  /// do the symmetric eigenvalue decomposition and no longer use the SVD
  /// code for that purose.
  int ApplyFloor(Real floor);

  bool IsDiagonal(Real cutoff = 1.0e-05) const;
  bool IsUnit(Real cutoff = 1.0e-05) const;
  bool IsZero(Real cutoff = 1.0e-05) const;
  bool IsTridiagonal(Real cutoff = 1.0e-05) const;

  /// sqrt of sum of square elements.
  Real FrobeniusNorm() const;

  /// Returns true if ((*this)-other).FrobeniusNorm() <=
  ///   tol*(*this).FrobeniusNorma()
  bool ApproxEqual(const SpMatrix<Real> &other, float tol = 0.01) const;

  // LimitCond:
  // Limits the condition of symmetric positive semidefinite matrix to
  // a specified value
  // by flooring all eigenvalues to a positive number which is some multiple
  // of the largest one (or zero if there are no positive eigenvalues).
  // Takes the condition number we are willing to accept, and floors
  // eigenvalues to the largest eigenvalue divided by this.
  //  Returns #eigs floored or already equal to the floor.
  // Throws exception if input is not positive definite.
  // returns #floored.
  MatrixIndexT LimitCond(Real maxCond = 1.0e+5, bool invert = false);

  // as LimitCond but all done in double precision. // returns #floored.
  MatrixIndexT LimitCondDouble(Real maxCond = 1.0e+5, bool invert = false) {
    SpMatrix<double> dmat(*this);
    MatrixIndexT ans = dmat.LimitCond(maxCond, invert);
    (*this).CopyFromSp(dmat);
    return ans;
  }
  Real Trace() const;

  /// Tridiagonalize the matrix with an orthogonal transformation.  If
  /// *this starts as S, produce T (and Q, if non-NULL) such that
  /// T = Q A Q^T, i.e. S = Q^T T Q.  Caution: this is the other way
  /// round from most authors (it's more efficient in row-major indexing).
  void Tridiagonalize(MatrixBase<Real> *Q);

  /// The symmetric QR algorithm.  This will mostly be useful in internal code.
  /// Typically, you will call this after Tridiagonalize(), on the same object.
  /// When called, *this (call it A at this point) must be tridiagonal; at exit,
  /// *this will be a diagonal matrix D that is similar to A via orthogonal
  /// transformations.  This algorithm right-multiplies Q by orthogonal
  /// transformations.  It turns *this from a tridiagonal into a diagonal matrix
  /// while maintaining that (Q *this Q^T) has the same value at entry and exit.
  /// At entry Q should probably be either NULL or orthogonal, but we don't check
  /// this.
  void Qr(MatrixBase<Real> *Q);

 private:
 void EigInternal(VectorBase<Real> *s, MatrixBase<Real> *P,
                   Real tolerance, int recurse) const;
};

/// @} end of "addtogroup matrix_group"

/// \addtogroup matrix_funcs_scalar
/// @{


/// Returns tr(A B).
float TraceSpSp(const SpMatrix<float> &A, const SpMatrix<float> &B);
double TraceSpSp(const SpMatrix<double> &A, const SpMatrix<double> &B);


template<typename Real>
inline bool ApproxEqual(const SpMatrix<Real> &A,
                        const SpMatrix<Real> &B, Real tol = 0.01) {
  return  A.ApproxEqual(B, tol);
}

template<typename Real>
inline void AssertEqual(const SpMatrix<Real> &A,
                        const SpMatrix<Real> &B, Real tol = 0.01) {
  KALDI_ASSERT(ApproxEqual(A, B, tol));
}



/// Returns tr(A B).
template<typename Real, typename OtherReal>
Real TraceSpSp(const SpMatrix<Real> &A, const SpMatrix<OtherReal> &B);



// TraceSpSpLower is the same as Trace(A B) except the lower-diagonal elements
// are counted only once not twice as they should be.  It is useful in certain
// optimizations.
template<typename Real>
Real TraceSpSpLower(const SpMatrix<Real> &A, const SpMatrix<Real> &B);


/// Returns tr(A B).
/// No option to transpose B because would make no difference.
template<typename Real>
Real TraceSpMat(const SpMatrix<Real> &A, const MatrixBase<Real> &B);

/// Returns tr(A B C)
/// (A and C may be transposed as specified by transA and transC).
template<typename Real>
Real TraceMatSpMat(const MatrixBase<Real> &A, MatrixTransposeType transA,
                   const SpMatrix<Real> &B, const MatrixBase<Real> &C,
                   MatrixTransposeType transC);

/// Returns tr (A B C D)
/// (A and C may be transposed as specified by transA and transB).
template<typename Real>
Real TraceMatSpMatSp(const MatrixBase<Real> &A, MatrixTransposeType transA,
                     const SpMatrix<Real> &B, const MatrixBase<Real> &C,
                     MatrixTransposeType transC, const SpMatrix<Real> &D);

/** Computes v1^T * M * v2.  Not as efficient as it could be where v1 == v2
 * (but no suitable blas routines available).
 */

/// Returns \f$ v_1^T M v_2 \f$
/// Not as efficient as it could be where v1 == v2.
template<typename Real>
Real VecSpVec(const VectorBase<Real> &v1, const SpMatrix<Real> &M,
               const VectorBase<Real> &v2);


/// @} \addtogroup matrix_funcs_scalar

/// \addtogroup matrix_funcs_misc
/// @{


/// This class describes the options for maximizing various quadratic objective
/// functions.  It's mostly as described in the SGMM paper "the subspace
/// Gaussian mixture model -- a structured model for speech recognition", but
/// the diagonal_precondition option is newly added, to handle problems where
/// different dimensions have very different scaling (we recommend to use the
/// option but it's set false for back compatibility).
struct SolverOptions {
  BaseFloat K; // maximum condition number
  BaseFloat eps;
  std::string name;
  bool optimize_delta;
  bool diagonal_precondition;
  bool print_debug_output;
  explicit SolverOptions(const std::string &name):
      K(1.0e+4), eps(1.0e-40), name(name),
      optimize_delta(true), diagonal_precondition(false),
      print_debug_output(true) { }
  SolverOptions(): K(1.0e+4), eps(1.0e-40), name("[unknown]"),
                   optimize_delta(true), diagonal_precondition(false),
                   print_debug_output(true) { }
  void Check() const;
};


/// Maximizes the auxiliary function
/// \f[    Q(x) = x.g - 0.5 x^T H x     \f]
/// using a numerically stable method. Like a numerically stable version of
/// \f$  x := Q^{-1} g.    \f$
/// Assumes H positive semidefinite.
/// Returns the objective-function change.

template<typename Real>
Real SolveQuadraticProblem(const SpMatrix<Real> &H,
                           const VectorBase<Real> &g,
                           const SolverOptions &opts,
                           VectorBase<Real> *x);



/// Maximizes the auxiliary function :
/// \f[   Q(x) = tr(M^T P Y) - 0.5 tr(P M Q M^T)        \f]
/// Like a numerically stable version of  \f$  M := Y Q^{-1}   \f$.
/// Assumes Q and P positive semidefinite, and matrix dimensions match
/// enough to make expressions meaningful.
/// This is mostly as described in the SGMM paper "the subspace Gaussian mixture
/// model -- a structured model for speech recognition", but the
/// diagonal_precondition option is newly added, to handle problems
/// where different dimensions have very different scaling (we recommend to use
/// the option but it's set false for back compatibility).
template<typename Real>
Real SolveQuadraticMatrixProblem(const SpMatrix<Real> &Q,
                                 const MatrixBase<Real> &Y,
                                 const SpMatrix<Real> &P,
                                 const SolverOptions &opts,
                                 MatrixBase<Real> *M);

/// Maximizes the auxiliary function :
/// \f[   Q(M) =  tr(M^T G) -0.5 tr(P_1 M Q_1 M^T) -0.5 tr(P_2 M Q_2 M^T).   \f]
/// Encountered in matrix update with a prior. We also apply a limit on the
/// condition but it should be less frequently necessary, and can be set larger.
template<typename Real>
Real SolveDoubleQuadraticMatrixProblem(const MatrixBase<Real> &G,
                                       const SpMatrix<Real> &P1,
                                       const SpMatrix<Real> &P2,
                                       const SpMatrix<Real> &Q1,
                                       const SpMatrix<Real> &Q2,
                                       const SolverOptions &opts,
                                       MatrixBase<Real> *M);


/// @} End of "addtogroup matrix_funcs_misc"

}  // namespace kaldi


// Including the implementation (now actually just includes some
// template specializations).
#include "matrix/sp-matrix-inl.h"


#endif  // KALDI_MATRIX_SP_MATRIX_H_