nnet-am-compute.cc
5.68 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// nnet2bin/nnet-am-compute.cc
// Copyright 2012 Johns Hopkins University (author: Daniel Povey)
// 2015 Johns Hopkins University (author: Daniel Garcia-Romero)
// 2015 David Snyder
// 2017 Karel Vesely
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "nnet2/train-nnet.h"
#include "nnet2/am-nnet.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet2;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Does the neural net computation for each file of input features, and\n"
"outputs as a matrix the result. Used mostly for debugging.\n"
"Note: if you want it to apply a log (e.g. for log-likelihoods), use\n"
"--apply-log=true\n"
"\n"
"Usage: nnet-am-compute [options] <model-in> <feature-rspecifier> "
"<feature-or-loglikes-wspecifier>\n"
"See also: nnet-compute, nnet-logprob\n";
bool divide_by_priors = false;
bool apply_log = false;
bool pad_input = true;
std::string use_gpu = "no";
int32 chunk_size = 0;
ParseOptions po(usage);
po.Register("divide-by-priors", ÷_by_priors, "If true, "
"divide by the priors stored in the model and re-normalize, apply-log may follow");
po.Register("apply-log", &apply_log, "Apply a log to the result of the computation "
"before outputting.");
po.Register("pad-input", &pad_input, "If true, duplicate the first and last frames "
"of input features as required for temporal context, to prevent #frames "
"of output being less than those of input.");
po.Register("use-gpu", &use_gpu,
"yes|no|optional|wait, only has effect if compiled with CUDA");
po.Register("chunk-size", &chunk_size, "Process the feature matrix in chunks. "
"This is useful when processing large feature files in the GPU. "
"If chunk-size > 0, pad-input must be true.");
po.Read(argc, argv);
if (po.NumArgs() != 3) {
po.PrintUsage();
exit(1);
}
// If chunk_size is greater than 0, pad_input needs to be true.
KALDI_ASSERT(chunk_size < 0 || pad_input);
#if HAVE_CUDA==1
CuDevice::Instantiate().SelectGpuId(use_gpu);
#endif
std::string nnet_rxfilename = po.GetArg(1),
features_rspecifier = po.GetArg(2),
features_or_loglikes_wspecifier = po.GetArg(3);
TransitionModel trans_model;
AmNnet am_nnet;
{
bool binary_read;
Input ki(nnet_rxfilename, &binary_read);
trans_model.Read(ki.Stream(), binary_read);
am_nnet.Read(ki.Stream(), binary_read);
}
Nnet &nnet = am_nnet.GetNnet();
int64 num_done = 0, num_frames = 0;
Vector<BaseFloat> inv_priors(am_nnet.Priors());
KALDI_ASSERT((!divide_by_priors || inv_priors.Dim() == am_nnet.NumPdfs()) &&
"Priors in neural network not set up.");
inv_priors.ApplyPow(-1.0);
SequentialBaseFloatMatrixReader feature_reader(features_rspecifier);
BaseFloatMatrixWriter writer(features_or_loglikes_wspecifier);
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string utt = feature_reader.Key();
const Matrix<BaseFloat> &feats = feature_reader.Value();
int32 output_frames = feats.NumRows(), output_dim = nnet.OutputDim();
if (!pad_input)
output_frames -= nnet.LeftContext() + nnet.RightContext();
if (output_frames <= 0) {
KALDI_WARN << "Skipping utterance " << utt << " because output "
<< "would be empty.";
continue;
}
Matrix<BaseFloat> output(output_frames, output_dim);
if (chunk_size > 0 && chunk_size < feats.NumRows()) {
NnetComputationChunked(nnet, feats, chunk_size, &output);
} else {
CuMatrix<BaseFloat> cu_feats(feats);
CuMatrix<BaseFloat> cu_output(output);
NnetComputation(nnet, cu_feats, pad_input, &cu_output);
output.CopyFromMat(cu_output);
}
if (divide_by_priors) {
output.MulColsVec(inv_priors); // scales each column by the corresponding element
// of inv_priors.
for (int32 i = 0; i < output.NumRows(); i++) {
SubVector<BaseFloat> frame(output, i);
BaseFloat p = frame.Sum();
if (!(p > 0.0)) {
KALDI_WARN << "Bad sum of probabilities " << p;
} else {
frame.Scale(1.0 / p); // re-normalize to sum to one.
}
}
}
if (apply_log) {
output.ApplyFloor(1.0e-20);
output.ApplyLog();
}
writer.Write(utt, output);
num_frames += feats.NumRows();
num_done++;
}
#if HAVE_CUDA==1
CuDevice::Instantiate().PrintProfile();
#endif
KALDI_LOG << "Processed " << num_done << " feature files, "
<< num_frames << " frames of input were processed.";
return (num_done == 0 ? 1 : 0);
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}