nnet-am-widen.cc
2.52 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// nnet2bin/nnet-am-widen.cc
// Copyright 2012-2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "nnet2/am-nnet.h"
#include "nnet2/widen-nnet.h"
#include "hmm/transition-model.h"
#include "tree/context-dep.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet2;
typedef kaldi::int32 int32;
const char *usage =
"Copy a (cpu-based) neural net and its associated transition model,\n"
"possibly changing the binary mode\n"
"Also supports multiplying all the learning rates by a factor\n"
"(the --learning-rate-factor option) and setting them all to a given\n"
"value (the --learning-rate options)\n"
"\n"
"Usage: nnet-am-widen [options] <nnet-in> <nnet-out>\n"
"e.g.:\n"
" nnet-am-widen --hidden-layer-dim=1024 1.mdl 2.mdl\n";
NnetWidenConfig config;
bool binary_write = true;
ParseOptions po(usage);
config.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 2) {
po.PrintUsage();
exit(1);
}
std::string nnet_rxfilename = po.GetArg(1),
nnet_wxfilename = po.GetArg(2);
TransitionModel trans_model;
AmNnet am_nnet;
{
bool binary;
Input ki(nnet_rxfilename, &binary);
trans_model.Read(ki.Stream(), binary);
am_nnet.Read(ki.Stream(), binary);
}
WidenNnet(config, &(am_nnet.GetNnet()));
{
Output ko(nnet_wxfilename, binary_write);
trans_model.Write(ko.Stream(), binary_write);
am_nnet.Write(ko.Stream(), binary_write);
}
KALDI_LOG << "Mixed up neural net from " << nnet_rxfilename
<< " and wrote it to " << nnet_wxfilename;
return 0;
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}