nnet-get-weighted-egs.cc
9.41 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// nnet2bin/nnet-get-weighted-egs.cc
// Copyright 2013-2014 (Author: Vimal Manohar)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "nnet2/nnet-example-functions.h"
namespace kaldi {
namespace nnet2 {
// returns an integer randomly drawn with expected value "expected_count"
// (will be either floor(expected_count) or ceil(expected_count)).
// this will go into an infinite loop if expected_count is very huge, but
// it should never be that huge.
// In the normal case, "expected_count" will be between zero and one.
int32 GetCount(double expected_count) {
KALDI_ASSERT(expected_count >= 0.0);
int32 ans = 0;
while (expected_count > 1.0) {
ans++;
expected_count--;
}
if (WithProb(expected_count))
ans++;
return ans;
}
static void ProcessFile(const MatrixBase<BaseFloat> &feats,
const Posterior &pdf_post,
const std::string &utt_id,
const Vector<BaseFloat> &weights,
int32 left_context,
int32 right_context,
int32 const_feat_dim,
BaseFloat keep_proportion,
BaseFloat weight_threshold,
bool use_frame_selection,
bool use_frame_weights,
int64 *num_frames_written,
int64 *num_frames_skipped,
NnetExampleWriter *example_writer) {
KALDI_ASSERT(feats.NumRows() == static_cast<int32>(pdf_post.size()));
int32 feat_dim = feats.NumCols();
KALDI_ASSERT(const_feat_dim < feat_dim);
int32 basic_feat_dim = feat_dim - const_feat_dim;
NnetExample eg;
Matrix<BaseFloat> input_frames(left_context + 1 + right_context,
basic_feat_dim);
eg.left_context = left_context;
// TODO: modify this code, and this binary itself, to support the --num-frames
// option to allow multiple frames per eg.
for (int32 i = 0; i < feats.NumRows(); i++) {
int32 count = GetCount(keep_proportion); // number of times
// we'll write this out (1 by default).
if (count > 0) {
// Set up "input_frames".
for (int32 j = -left_context; j <= right_context; j++) {
int32 j2 = j + i;
if (j2 < 0) j2 = 0;
if (j2 >= feats.NumRows()) j2 = feats.NumRows() - 1;
SubVector<BaseFloat> src(feats, j2), dest(input_frames,
j + left_context);
dest.CopyFromVec(src);
}
eg.labels.push_back(pdf_post[i]);
eg.input_frames = input_frames;
if (const_feat_dim > 0) {
// we'll normally reach here if we're using online-estimated iVectors.
SubVector<BaseFloat> const_part(feats.Row(i),
basic_feat_dim, const_feat_dim);
eg.spk_info.CopyFromVec(const_part);
}
if (use_frame_selection) {
if (weights(i) < weight_threshold) {
(*num_frames_skipped)++;
continue;
}
}
std::ostringstream os;
os << utt_id << "-" << i;
std::string key = os.str(); // key in the archive is the number of the example
for (int32 c = 0; c < count; c++)
example_writer->Write(key, eg);
}
}
}
} // namespace nnet2
} // namespace kaldi
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet2;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Get frame-by-frame examples of data for neural network training.\n"
"Essentially this is a format change from features and posteriors\n"
"into a special frame-by-frame format. To split randomly into\n"
"different subsets, do nnet-copy-egs with --random=true, but\n"
"note that this does not randomize the order of frames.\n"
"\n"
"Usage: nnet-get-weighted-egs [options] <features-rspecifier> "
"<pdf-post-rspecifier> <weights-rspecifier> <training-examples-out>\n"
"\n"
"An example [where $feats expands to the actual features]:\n"
"nnet-get-weighted-egs --left-context=8 --right-context=8 \"$feats\" \\\n"
" \"ark:gunzip -c exp/nnet/ali.1.gz | ali-to-pdf exp/nnet/1.nnet ark:- ark:- | ali-to-post ark:- ark:- |\" \\\n"
" ark:- \n"
"Note: the --left-context and --right-context would be derived from\n"
"the output of nnet-info.";
int32 left_context = 0, right_context = 0, const_feat_dim = 0;
int32 srand_seed = 0;
BaseFloat keep_proportion = 1.0;
BaseFloat weight_threshold = 0.0;
bool use_frame_selection = true, use_frame_weights=false;
ParseOptions po(usage);
po.Register("left-context", &left_context, "Number of frames of left context "
"the neural net requires.");
po.Register("right-context", &right_context, "Number of frames of right context "
"the neural net requires.");
po.Register("const-feat-dim", &const_feat_dim, "If specified, the last "
"const-feat-dim dimensions of the feature input are treated as "
"constant over the context window (so are not spliced)");
po.Register("keep-proportion", &keep_proportion, "If <1.0, this program will "
"randomly keep this proportion of the input samples. If >1.0, it will "
"in expectation copy a sample this many times. It will copy it a number "
"of times equal to floor(keep-proportion) or ceil(keep-proportion).");
po.Register("srand", &srand_seed, "Seed for random number generator "
"(only relevant if --keep-proportion != 1.0)");
po.Register("weight-threshold", &weight_threshold, "Keep only frames with weights "
"above this threshold.");
po.Register("use-frame-selection", &use_frame_selection, "Remove the frames below threshold.");
po.Register("use-frame-weights", &use_frame_weights, "Scale the error derivatives by the weight");
po.Read(argc, argv);
srand(srand_seed);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
std::string feature_rspecifier = po.GetArg(1),
pdf_post_rspecifier = po.GetArg(2),
weights_rspecifier = po.GetArg(3),
examples_wspecifier = po.GetArg(4);
// Read in all the training files.
SequentialBaseFloatMatrixReader feat_reader(feature_rspecifier);
RandomAccessPosteriorReader pdf_post_reader(pdf_post_rspecifier);
RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier);
NnetExampleWriter example_writer(examples_wspecifier);
int32 num_done = 0, num_err = 0;
int64 num_frames_written = 0;
int64 num_frames_skipped = 0;
for (; !feat_reader.Done(); feat_reader.Next()) {
std::string key = feat_reader.Key();
const Matrix<BaseFloat> &feats = feat_reader.Value();
if (!pdf_post_reader.HasKey(key)) {
KALDI_WARN << "No pdf-level posterior for key " << key;
num_err++;
} else {
const Posterior &pdf_post = pdf_post_reader.Value(key);
if (pdf_post.size() != feats.NumRows()) {
KALDI_WARN << "Posterior has wrong size " << pdf_post.size()
<< " versus " << feats.NumRows();
num_err++;
continue;
}
if (!weights_reader.HasKey(key)) {
KALDI_ERR << "No weights for utterance " << key;
//ProcessFile(feats, pdf_post, NULL,
// left_context, right_context, const_feat_dim, keep_proportion,
// weight_threshold, false, false, &num_frames_written,
// &num_frames_skipped, &example_writer);
} else {
Vector<BaseFloat> weights = weights_reader.Value(key);
if (weights.Dim() != static_cast<int32>(pdf_post.size())) {
KALDI_WARN << "Weights for utterance " << key
<< " have wrong size, " << weights.Dim()
<< " vs. " << pdf_post.size();
num_err++;
continue;
}
ProcessFile(feats, pdf_post, key, weights, left_context, right_context,
const_feat_dim, keep_proportion, weight_threshold,
use_frame_selection, use_frame_weights,
&num_frames_written, &num_frames_skipped, &example_writer);
}
num_done++;
}
}
KALDI_LOG << "Finished generating examples, "
<< "successfully processed " << num_done
<< " feature files, wrote " << num_frames_written << " examples, "
<< "skipped " << num_frames_skipped << " examples, "
<< num_err << " files had errors.";
return (num_done == 0 ? 1 : 0);
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}