nnet-latgen-faster-parallel.cc
7.84 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// nnet2bin/nnet-latgen-faster-parallel.cc
// Copyright 2009-2013 Microsoft Corporation
// Johns Hopkins University (author: Daniel Povey)
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "tree/context-dep.h"
#include "hmm/transition-model.h"
#include "fstext/kaldi-fst-io.h"
#include "decoder/decoder-wrappers.h"
#include "nnet2/decodable-am-nnet.h"
#include "base/timer.h"
#include "util/kaldi-thread.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet2;
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::Fst;
using fst::StdArc;
const char *usage =
"Generate lattices using neural net model.\n"
"Usage: nnet-latgen-faster-parallel [options] <nnet-in> <fst-in|fsts-rspecifier> <features-rspecifier>"
" <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] ]\n";
ParseOptions po(usage);
Timer timer;
bool allow_partial = false;
BaseFloat acoustic_scale = 0.1;
LatticeFasterDecoderConfig config;
TaskSequencerConfig sequencer_config; // has --num-threads option
std::string word_syms_filename;
sequencer_config.Register(&po);
config.Register(&po);
po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods");
po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]");
po.Register("allow-partial", &allow_partial, "If true, produce output even if end state was not reached.");
po.Read(argc, argv);
if (po.NumArgs() < 4 || po.NumArgs() > 6) {
po.PrintUsage();
exit(1);
}
std::string model_in_filename = po.GetArg(1),
fst_in_str = po.GetArg(2),
feature_rspecifier = po.GetArg(3),
lattice_wspecifier = po.GetArg(4),
words_wspecifier = po.GetOptArg(5),
alignment_wspecifier = po.GetOptArg(6);
TransitionModel trans_model;
AmNnet am_nnet;
{
bool binary;
Input ki(model_in_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_nnet.Read(ki.Stream(), binary);
}
bool determinize = config.determinize_lattice;
CompactLatticeWriter compact_lattice_writer;
LatticeWriter lattice_writer;
if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier)
: lattice_writer.Open(lattice_wspecifier)))
KALDI_ERR << "Could not open table for writing lattices: "
<< lattice_wspecifier;
TaskSequencer<DecodeUtteranceLatticeFasterClass> sequencer(sequencer_config);
Int32VectorWriter words_writer(words_wspecifier);
Int32VectorWriter alignment_writer(alignment_wspecifier);
fst::SymbolTable *word_syms = NULL;
if (word_syms_filename != "")
if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
// We support reading in a vector to describe each speaker, if the neural
// net requires this (i.e. it was trained with this).
double tot_like = 0.0;
kaldi::int64 frame_count = 0;
int num_done = 0, num_err = 0;
Fst<StdArc> *decode_fst = NULL;
if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) {
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
decode_fst = fst::ReadFstKaldiGeneric(fst_in_str);
timer.Reset();
{
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string utt = feature_reader.Key();
const Matrix<BaseFloat> &features (feature_reader.Value());
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_err++;
continue;
}
bool pad_input = true;
DecodableAmNnetParallel *nnet_decodable = new DecodableAmNnetParallel(
trans_model, am_nnet,
new CuMatrix<BaseFloat>(features),
pad_input, acoustic_scale);
LatticeFasterDecoder *decoder = new LatticeFasterDecoder(*decode_fst,
config);
DecodeUtteranceLatticeFasterClass *task =
new DecodeUtteranceLatticeFasterClass(
decoder, nnet_decodable, // takes ownership of these two.
trans_model, word_syms, utt, acoustic_scale, determinize,
allow_partial, &alignment_writer, &words_writer,
&compact_lattice_writer, &lattice_writer,
&tot_like, &frame_count, &num_done, &num_err, NULL);
sequencer.Run(task); // takes ownership of "task",
// and will delete it when done.
}
}
} else { // We have different FSTs for different utterances.
SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_in_str);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !fst_reader.Done(); fst_reader.Next()) {
std::string utt = fst_reader.Key();
if (!feature_reader.HasKey(utt)) {
KALDI_WARN << "Not decoding utterance " << utt
<< " because no features available.";
num_err++;
continue;
}
const Matrix<BaseFloat> &features = feature_reader.Value(utt);
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_err++;
continue;
}
// This constructor of LatticeFasterDecoder takes ownership of the FST.
LatticeFasterDecoder *decoder =
new LatticeFasterDecoder(config, fst_reader.Value().Copy());
bool pad_input = true;
DecodableAmNnetParallel *nnet_decodable = new DecodableAmNnetParallel(
trans_model, am_nnet,
new CuMatrix<BaseFloat>(features),
pad_input, acoustic_scale);
DecodeUtteranceLatticeFasterClass *task =
new DecodeUtteranceLatticeFasterClass(
decoder, nnet_decodable, // takes ownership of these two.
trans_model, word_syms, utt, acoustic_scale, determinize,
allow_partial, &alignment_writer, &words_writer,
&compact_lattice_writer, &lattice_writer,
&tot_like, &frame_count, &num_done, &num_err, NULL);
sequencer.Run(task); // takes ownership of "task",
// and will delete it when done.
}
}
sequencer.Wait(); // Waits for all tasks to be done.
delete decode_fst;
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken "<< elapsed
<< "s: real-time factor per thread assuming 100 frames/sec is "
<< (sequencer_config.num_threads * elapsed * 100.0 / frame_count);
KALDI_LOG << "Done " << num_done << " utterances, failed for "
<< num_err;
KALDI_LOG << "Overall log-likelihood per frame is "
<< (tot_like / frame_count) << " over " << frame_count
<< " frames.";
delete word_syms;
if (num_done != 0) return 0;
else return 1;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}